Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 192(3): 366-375, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431893

RESUMO

Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 µm and 4.1 µm including pixel uncertainty with a mean distance of 2.52±0.10 µm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miosinas/metabolismo , Animais , Canais de Cálcio/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Transdução de Sinais
2.
Med Res Rev ; 33(5): 1174-213, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23633235

RESUMO

Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.


Assuntos
Coração/fisiopatologia , Pulmão/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Sistemas do Segundo Mensageiro , Animais , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Humanos
3.
Biomed Opt Express ; 7(2): 525-41, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26977360

RESUMO

Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA