Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell ; 158(5): 1060-1071, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171407

RESUMO

Antibiotic resistance is a key medical concern, with antibiotic use likely being an important cause. However, here we describe an alternative route to clinically relevant antibiotic resistance that occurs solely due to competitive interactions among bacterial cells. We consistently observe that isolates of Methicillin-resistant Staphylococcus aureus diversify spontaneously into two distinct, sequentially arising strains. The first evolved strain outgrows the parent strain via secretion of surfactants and a toxic bacteriocin. The second is resistant to the bacteriocin. Importantly, this second strain is also resistant to intermediate levels of vancomycin. This so-called VISA (vancomycin-intermediate S. aureus) phenotype is seen in many hard-to-treat clinical isolates. This strain diversification also occurs during in vivo infection in a mouse model, which is consistent with the fact that both coevolved phenotypes resemble strains commonly found in clinic. Our study shows how competition between coevolving bacterial strains can generate antibiotic resistance and recapitulate key clinical phenotypes.


Assuntos
Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Biofilmes/efeitos dos fármacos , Evolução Biológica , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos Endogâmicos BALB C , Fenômenos Microbiológicos , Dados de Sequência Molecular , Pigmentação , Alinhamento de Sequência , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Vancomicina/farmacologia
2.
Mol Cell ; 65(1): 39-51, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28061332

RESUMO

Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in Salmonella enterica. A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3' fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Precursores de RNA/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Salmonella enterica/enzimologia , Regiões 3' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Biologia Computacional , Bases de Dados Genéticas , Endorribonucleases/química , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Salmonella enterica/genética , Relação Estrutura-Atividade , Transcriptoma , Uridina/metabolismo
3.
Nucleic Acids Res ; 51(3): e16, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36537202

RESUMO

Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , RNA , Mitocôndrias/genética , Plastídeos
4.
EMBO J ; 39(9): e103852, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227509

RESUMO

RNA-protein interactions are the crucial basis for many steps of bacterial gene expression, including post-transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram-negative bacteria, knowledge about RNA-protein complexes in Gram-positive species remains scarce. Here, we used the Grad-seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in-gradient distributions and subsequent tag-based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram-positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA-based regulation of virulence-relevant pathways.


Assuntos
Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Streptococcus pneumoniae/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Proteínas de Ligação a RNA/metabolismo
5.
J Immunol ; 208(7): 1675-1685, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321877

RESUMO

Strategically located at mucosal sites, mast cells are instrumental in sensing invading pathogens and modulating the quality of the ensuing immune responses depending on the nature of the infecting microbe. It is believed that mast cells produce type I IFN (IFN-I) in response to viruses, but not to bacterial infections, because of the incapacity of bacterial pathogens to internalize within mast cells, where signaling cascades leading to IFN-I production are generated. However, we have previously reported that, in contrast with other bacterial pathogens, Staphylococcus aureus can internalize into mast cells and therefore could trigger a unique response. In this study, we have investigated the molecular cross-talk between internalized S. aureus and the human mast cells HMC-1 using a dual RNA sequencing approach. We found that a proportion of internalized S. aureus underwent profound transcriptional reprogramming within HMC-1 cells to adapt to the nutrients and stress encountered in the intracellular environment and remained viable. HMC-1 cells, in turn, recognized intracellular S. aureus via cGMP-AMP synthase-STING-TANK-binding kinase 1 signaling pathway, leading to the production of IFN-I. Bacterial internalization and viability were crucial for IFN-I induction because inhibition of S. aureus internalization or infection with heat-killed bacteria completely prevented the production of IFN-I by HMC-1 cells. Feeding back in an autocrine manner in S. aureus-harboring HMC-1 cells and in a paracrine manner in noninfected neighboring HMC-1 cells, IFN-I promoted a cell-autonomous antimicrobial state by inducing the transcription of IFN-I-stimulated genes. This study provides unprecedented evidence of the capacity of mast cells to produce IFN-I in response to a bacterial pathogen.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Citosol , Humanos , Imunidade Celular , Mastócitos
6.
Nature ; 563(7729): 121-125, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333624

RESUMO

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


Assuntos
Variação Antigênica/genética , Cromatina/genética , Cromatina/metabolismo , DNA de Protozoário/metabolismo , Genoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/imunologia , DNA de Protozoário/genética , Haplótipos/genética , Histonas/deficiência , Histonas/genética , Família Multigênica/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
7.
EMBO J ; 38(16): e101650, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31313835

RESUMO

Small regulatory RNAs (sRNAs) are crucial components of many stress response systems. The envelope stress response (ESR) of Gram-negative bacteria is a paradigm for sRNA-mediated stress management and involves, among other factors, the alternative sigma factor E (σE ) and one or more sRNAs. In this study, we identified the MicV sRNA as a new member of the σE regulon in Vibrio cholerae. We show that MicV acts redundantly with another sRNA, VrrA, and that both sRNAs share a conserved seed-pairing domain allowing them to regulate multiple target mRNAs. V. cholerae lacking σE displayed increased sensitivity toward antimicrobials, and over-expression of either of the sRNAs suppressed this phenotype. Laboratory selection experiments using a library of synthetic sRNA regulators revealed that the seed-pairing domain of σE -dependent sRNAs is strongly enriched among sRNAs identified under membrane-damaging conditions and that repression of OmpA is crucial for sRNA-mediated stress relief. Together, our work shows that MicV and VrrA act as global regulators in the ESR of V. cholerae and provides evidence that bacterial sRNAs can be functionally annotated by their seed-pairing sequences.


Assuntos
Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Vibrio cholerae/genética , Proteínas da Membrana Bacteriana Externa/genética , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Estresse Fisiológico
8.
Curr Microbiol ; 81(1): 24, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032503

RESUMO

This study aimed to compare diagnostic sensitivities of a rapid test (Rt) and an ELISA kit for detecting anti-SARS-CoV-2 IgM/IgG in virus-RT-PCR-positive (VPP) and virus-RT-PCR-unchecked (VPU) subjects in an Egyptian cohort during the first wave of SARS-CoV-2 infection. The results revealed higher sensitivity of the Rt for detecting IgM/IgG in the VPP subjects. Both the Rt and ELISA showed identical sensitivities for IgM detection in the VPU subjects. The ELISA was more sensitive for detecting IgG in the VPU subjects. Generally, within both the VPP and the VPU groups, Rt was more sensitive for detecting IgM/IgG among the symptomatic (S) compared to asymptomatic (AS) subjects than ELISA. Within the VPP group, the Rt was more sensitive for detecting both IgM/IgG among the AS subjects than ELISA. In the VPU group, the Rt was more sensitive for detecting IgM among the S subjects than ELISA. The ELISA was more sensitive for detecting IgM/IgG among AS subjects than the Rt. From these results we concluded that, despite the limitation of sample size, this study indicates suitability of the used Rt for detecting anti-SARS-CoV-2 IgM/IgG among S subjects and sheds light on possibility of relying on the used ELISA for IgG detection among AS human subjects.


Assuntos
COVID-19 , Humanos , Egito , COVID-19/diagnóstico , SARS-CoV-2 , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina M
9.
Nucleic Acids Res ; 49(6): 3003-3019, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33706375

RESUMO

Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rhodobacter sphaeroides/genética , Alphaproteobacteria/genética , Proteínas de Bactérias/fisiologia , Simulação por Computador , Endorribonucleases/fisiologia , Estabilidade de RNA , Proteínas de Ligação a RNA/fisiologia , Rhodobacter sphaeroides/metabolismo , Estresse Fisiológico , Transcriptoma
10.
Nucleic Acids Res ; 49(5): 2894-2915, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33619526

RESUMO

Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.


Assuntos
Antibacterianos/farmacologia , Peptídeos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/genética , Tetraciclina/farmacologia , Pareamento de Bases , Regulação Bacteriana da Expressão Gênica , Peptídeos/química , RNA Antissenso/metabolismo , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sinorhizobium meliloti/efeitos dos fármacos
11.
Nature ; 529(7587): 496-501, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26789254

RESUMO

Bacteria express many small RNAs for which the regulatory roles in pathogenesis have remained poorly understood due to a paucity of robust phenotypes in standard virulence assays. Here we use a generic 'dual RNA-seq' approach to profile RNA expression simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and reveal the molecular impact of bacterial riboregulators. We identify a PhoP-activated small RNA, PinT, which upon bacterial internalization temporally controls the expression of both invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity causes pervasive changes in coding and noncoding transcripts of the host. Interspecies correlation analysis links PinT to host cell JAK-STAT signalling, and we identify infection-specific alterations in multiple long noncoding RNAs. Our study provides a paradigm for a sensitive RNA-based analysis of intracellular bacterial pathogens and their hosts without physical separation, as well as a new discovery route for hidden functions of pathogen genes.


Assuntos
Regulação da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , Salmonella typhimurium/genética , Animais , Proteínas de Bactérias/metabolismo , Feminino , Genes Bacterianos/genética , Células HeLa , Humanos , Janus Quinases/metabolismo , Camundongos , Viabilidade Microbiana/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Fatores de Transcrição STAT/metabolismo , Salmonella typhimurium/citologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais/genética , Transcriptoma/genética , Virulência/genética
12.
Nucleic Acids Res ; 48(16): 9301-9319, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32813020

RESUMO

Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.


Assuntos
Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Pequeno RNA não Traduzido/genética , RNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Ribossomos/genética
13.
Nucleic Acids Res ; 48(17): 9762-9786, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32182356

RESUMO

Ribosome biogenesis requires numerous trans-acting factors, some of which are deeply conserved. In Bacteria, the endoribonuclease YbeY is believed to be involved in 16S rRNA 3'-end processing and its loss was associated with ribosomal abnormalities. In Eukarya, YBEY appears to generally localize to mitochondria (or chloroplasts). Here we show that the deletion of human YBEY results in a severe respiratory deficiency and morphologically abnormal mitochondria as an apparent consequence of impaired mitochondrial translation. Reduced stability of 12S rRNA and the deficiency of several proteins of the small ribosomal subunit in YBEY knockout cells pointed towards a defect in mitochondrial ribosome biogenesis. The specific interaction of mitoribosomal protein uS11m with YBEY suggests that the latter helps to properly incorporate uS11m into the nascent small subunit in its late assembly stage. This scenario shows similarities with final stages of cytosolic ribosome biogenesis, and may represent a late checkpoint before the mitoribosome engages in translation.


Assuntos
Ribossomos Mitocondriais/metabolismo , Ribonucleases/metabolismo , Respiração Celular/genética , Escherichia coli/genética , Expressão Gênica , Células HEK293 , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA Ribossômico/metabolismo , Ribonucleases/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
14.
EMBO J ; 36(17): 2581-2594, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701485

RESUMO

Genome-wide transcription studies are revealing an increasing number of "dispersed promoters" that, unlike "focused promoters", lack well-conserved sequence motifs and tight regulation. Dispersed promoters are nevertheless marked by well-defined chromatin structures, suggesting that specific sequence elements must exist in these unregulated promoters. Here, we have analyzed regions of transcription initiation in the eukaryotic parasite Trypanosoma brucei, in which RNA polymerase II transcription initiation occurs over broad regions without distinct promoter motifs and lacks regulation. Using a combination of site-specific and genome-wide assays, we identified GT-rich promoters that can drive transcription and promote the targeted deposition of the histone variant H2A.Z in a genomic context-dependent manner. In addition, upon mapping nucleosome occupancy at high resolution, we find nucleosome positioning to correlate with RNA pol II enrichment and gene expression, pointing to a role in RNA maturation. Nucleosome positioning may thus represent a previously unrecognized layer of gene regulation in trypanosomes. Our findings show that even highly dispersed, unregulated promoters contain specific DNA elements that are able to induce transcription and changes in chromatin structure.


Assuntos
Histonas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Transcrição Gênica
15.
PLoS Pathog ; 15(3): e1007618, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870530

RESUMO

RsaE is a conserved small regulatory RNA (sRNA) which was previously reported to represent a riboregulator of central carbon flow and other metabolic pathways in Staphylococcus aureus and Bacillus subtilis. Here we show that RsaE contributes to extracellular (e)DNA release and biofilm-matrix switching towards polysaccharide intercellular adhesin (PIA) production in a hypervariable Staphylococcus epidermidis isolate. Transcriptome analysis through differential RNA sequencing (dRNA-seq) in combination with confocal laser scanning microscopy (CLSM) and reporter gene fusions demonstrate that S. epidermidis protein- and PIA-biofilm matrix producers differ with respect to RsaE and metabolic gene expression. RsaE is spatiotemporally expressed within S. epidermidis PIA-mediated biofilms, and its overexpression triggers a PIA biofilm phenotype as well as eDNA release in an S. epidermidis protein biofilm matrix-producing strain background. dRNA-seq and Northern blot analyses revealed RsaE to exist as a major full-length 100-nt transcript and a minor processed species lacking approximately 20 nucleotides at the 5'-end. RsaE processing results in expansion of the mRNA target spectrum. Thus, full-length RsaE interacts with S. epidermidis antiholin-encoding lrgA mRNA, facilitating bacterial lysis and eDNA release. Processed RsaE, however, interacts with the 5'-UTR of icaR and sucCD mRNAs, encoding the icaADBC biofilm operon repressor IcaR and succinyl-CoA synthetase of the tricarboxylic acid (TCA) cycle, respectively. RsaE augments PIA-mediated biofilm matrix production, most likely through activation of icaADBC operon expression via repression of icaR as well as by TCA cycle inhibition and re-programming of staphylococcal central carbon metabolism towards PIA precursor synthesis. Additionally, RsaE supports biofilm formation by mediating the release of eDNA as stabilizing biofilm matrix component. As RsaE itself is heterogeneously expressed within biofilms, we consider this sRNA to function as a factor favoring phenotypic heterogeneity and supporting division of labor in S. epidermidis biofilm communities.


Assuntos
Matriz Extracelular/genética , Pequeno RNA não Traduzido/metabolismo , Staphylococcus epidermidis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Matriz Extracelular/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Óperon/genética , Fenótipo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Pequeno RNA não Traduzido/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus/genética , Staphylococcus epidermidis/metabolismo
16.
Mol Microbiol ; 111(6): 1571-1591, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30873665

RESUMO

Polysaccharide intercellular adhesin (PIA)-associated biofilm formation is mediated by the intercellular adhesin (ica) locus and represents a major pathomechanism of Staphylococcus epidermidis. Here, we report on a novel long non-coding (nc)RNA, named IcaZ, which is approximately 400 nucleotides in size. icaZ is located downstream of the ica repressor gene icaR and partially overlaps with the icaR 3' UTR. icaZ exclusively exists in ica-positive S. epidermidis, but not in S. aureus or other staphylococci. Inactivation of the gene completely abolishes PIA production. IcaZ is transcribed as a primary transcript from its own promoter during early- and mid-exponential growth and its transcription is induced by low temperature, ethanol and salt stress. IcaZ targets the icaR 5' UTR and hampers icaR mRNA translation, which alleviates repression of icaADBC operon transcription and results in PIA production. Interestingly, other than in S. aureus, posttranscriptional control of icaR mRNA in S. epidermidis does not involve icaR mRNA 5'/3' UTR base pairing. This suggests major structural and functional differences in icaADBC operon regulation between the two species that also involve the recruitment of ncRNAs. Together, the IcaZ ncRNA represents an unprecedented novel species-specific player involved in the control of PIA production in NBSP S. epidermidis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/fisiologia , RNA não Traduzido/genética , Staphylococcus epidermidis/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óperon , Regiões Promotoras Genéticas , Staphylococcus epidermidis/crescimento & desenvolvimento , Transcrição Gênica
18.
Nucleic Acids Res ; 46(20): 10969-10982, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30165530

RESUMO

Bacterial small RNAs (sRNAs) are a heterogeneous group of post-transcriptional regulators that often act at the heart of large networks. Hundreds of sRNAs have been discovered by genome-wide screens and most of these sRNAs exert their functions by base-pairing with target mRNAs. However, studies addressing the molecular roles of sRNAs have been largely confined to gamma-proteobacteria, such as Escherichia coli. Here we identify and characterize a novel sRNA, ChvR, from the alpha-proteobacterium Caulobacter crescentus. Transcription of chvR is controlled by the conserved two-component system ChvI-ChvG and it is expressed in response to DNA damage, low pH, and growth in minimal medium. Transient over-expression of ChvR in combination with genome-wide transcriptome profiling identified the mRNA of the TonB-dependent receptor ChvT as the sole target of ChvR. Genetic and biochemical analyses showed that ChvR represses ChvT at the post-transcriptional level through direct base-pairing. Fine-mapping of the ChvR-chvT interaction revealed the requirement of two distinct base-pairing sites for full target regulation. Finally, we show that ChvR-controlled repression of chvT is independent of the ubiquitous RNA-chaperone Hfq, and therefore distinct from previously reported mechanisms employed by prototypical bacterial sRNAs. These findings have implications for the mechanism and evolution of sRNA function across bacterial species.


Assuntos
Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Caulobacter crescentus/metabolismo , Dano ao DNA , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo
19.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30885931

RESUMO

Riboregulation involving regulatory RNAs, RNA chaperones, and ribonucleases is fundamental for the rapid adaptation of gene expression to changing environmental conditions. The gene coding for the RNase YbeY belongs to the minimal prokaryotic genome set and has a profound impact on physiology in a wide range of bacteria. Here, we show that the Agrobacterium tumefaciensybeY gene is not essential. Deletion of the gene in the plant pathogen reduced growth, motility, and stress tolerance. Most interestingly, YbeY is crucial for A. tumefaciens-mediated T-DNA transfer and tumor formation. Comparative proteomics by using isobaric tags for relative and absolute quantitation (iTRAQ) revealed dysregulation of 59 proteins, many of which have previously been found to be dependent on the RNA chaperone Hfq. YbeY and Hfq have opposing effects on production of these proteins. Accumulation of a 16S rRNA precursor in the ybeY mutant suggests that A. tumefaciens YbeY is involved in rRNA processing. RNA coimmunoprecipitation-sequencing (RIP-Seq) showed binding of YbeY to the region immediately upstream of the 16S rRNA. Purified YbeY is an oligomer with RNase activity. It does not physically interact with Hfq and thus plays a partially overlapping but distinct role in the riboregulatory network of the plant pathogen.IMPORTANCE Although ybeY gene belongs to the universal bacterial core genome, its biological function is incompletely understood. Here, we show that YbeY is critical for fitness and host-microbe interaction in the plant pathogen Agrobacterium tumefaciens Consistent with the reported endoribonuclease activity of YbeY, A. tumefaciens YbeY acts as a RNase involved in maturation of 16S rRNA. This report adds a worldwide plant pathogen and natural genetic engineer of plants to the growing list of bacteria that require the conserved YbeY protein for host-microbe interaction.


Assuntos
Agrobacterium tumefaciens/genética , DNA Bacteriano/genética , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Ribossomos/genética , Adaptação Fisiológica , Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/metabolismo , Endorribonucleases/deficiência , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/metabolismo , Homologia de Sequência do Ácido Nucleico , Estresse Fisiológico , Virulência
20.
RNA Biol ; 16(4): 492-503, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30153081

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive defense system against foreign nucleic acids. In the methanoarchaeon Methanosarcina mazei Gö1, two types of CRISPR-Cas systems are present (type I-B and type III-C). Both loci encode a Cas6 endonuclease, Cas6b-IB and Cas6b-IIIC, typically responsible for maturation of functional short CRISPR RNAs (crRNAs). To evaluate potential cross cleavage activity, we biochemically characterized both Cas6b proteins regarding their crRNA binding behavior and their ability to process pre-crRNA from the respective CRISPR array in vivo. Maturation of crRNA was studied in the respective single deletion mutants by northern blot and RNA-Seq analysis demonstrating that in vivo primarily Cas6b-IB is responsible for crRNA processing of both CRISPR arrays. Tentative protein level evidence for the translation of both Cas6b proteins under standard growth conditions was detected, arguing for different activities or a potential non-redundant role of Cas6b-IIIC within the cell. Conservation of both Cas6 endonucleases was observed in several other M. mazei isolates, though a wide variety was displayed. In general, repeat and leader sequence conservation revealed a close correlation in the M. mazei strains. The repeat sequences from both CRISPR arrays from M. mazei Gö1 contain the same sequence motif with differences only in two nucleotides. These data stand in contrast to all other analyzed M. mazei isolates, which have at least one additional CRISPR array with repeats belonging to another sequence motif. This conforms to the finding that Cas6b-IB is the crucial and functional endonuclease in M. mazei Gö1. Abbreviations: sRNA: small RNA; crRNA: CRISPR RNA; pre-crRNAs: Precursor CRISPR RNA; CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated; nt: nucleotide; RNP: ribonucleoprotein; RBS: ribosome binding site.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Methanosarcina/genética , Processamento Pós-Transcricional do RNA/genética , RNA Arqueal/genética , Sequência de Bases , Sequência Conservada/genética , Endonucleases/metabolismo , Regulação da Expressão Gênica , Mutação/genética , Nucleotídeos/genética , Sequências Repetitivas de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA