Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769362

RESUMO

Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, make the comparison of the studies in the literature extremely difficult. This work aims to investigate the EV amount and EV-associated miRNAs released in circulation in response to different physical exercise regimens. Healthy individuals were subjected to different exercise protocols: acute aerobic exercise (AAE) and training (AT), acute maximal aerobic exercise (AMAE) and altitude aerobic training (AAT). We found a tendency for total EVs to increase in the sedentary condition compared to trained participants following AAE. Moreover, the cytofluorimetric analysis showed an increase in CD81+/SGCA+/CD45- EVs in response to AAE. Although a single bout of moderate/maximal exercise did not impact the total EV number, EV-miRNA levels were affected as a result. In detail, EV-associated miR-206, miR-133b and miR-146a were upregulated following AAE, and this trend appeared intensity-dependent. Finally, THP-1 macrophage treatment with exercise-derived EVs induced an increase of the mRNAs encoding for IL-1ß, IL-6 and CD163 using baseline and immediately post-exercise EVs. Still, 1 h post-exercise EVs failed to stimulate a pro-inflammatory program. In conclusion, the reported data provide a better understanding of the release of circulating EVs and their role as mediators of the inflammatory processes associated with exercise.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , Macrófagos , Exercício Físico
2.
Entropy (Basel) ; 25(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37510013

RESUMO

Diversity maximization is a fundamental problem with broad applications in data summarization, web search, and recommender systems. Given a set X of n elements, the problem asks for a subset S of k≪n elements with maximum diversity, as quantified by the dissimilarities among the elements in S. In this paper, we study diversity maximization with fairness constraints in streaming and sliding-window models. Specifically, we focus on the max-min diversity maximization problem, which selects a subset S that maximizes the minimum distance (dissimilarity) between any pair of distinct elements within it. Assuming that the set X is partitioned into m disjoint groups by a specific sensitive attribute, e.g., sex or race, ensuring fairness requires that the selected subset S contains ki elements from each group i∈[m]. Although diversity maximization has been extensively studied, existing algorithms for fair max-min diversity maximization are inefficient for data streams. To address the problem, we first design efficient approximation algorithms for this problem in the (insert-only) streaming model, where data arrive one element at a time, and a solution should be computed based on the elements observed in one pass. Furthermore, we propose approximation algorithms for this problem in the sliding-window model, where only the latest w elements in the stream are considered for computation to capture the recency of the data. Experimental results on real-world and synthetic datasets show that our algorithms provide solutions of comparable quality to the state-of-the-art offline algorithms while running several orders of magnitude faster in the streaming and sliding-window settings.

3.
Semin Cancer Biol ; 60: 285-293, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669505

RESUMO

Triple negative breast cancer (TNBC) is one of the most biologically aggressive and very often lethal breast disease. It is one of the most puzzling women malignancies, and it currently appears not to be a good candidate to a standardized, unanimously accepted and sufficiently active therapeutic strategy. Fast proliferating and poorly differentiated, it is histopathologically heterogeneous, and even more ambiguous at the molecular level, offering few recurrent actionable targets to the clinicians. It is a formidable and vicious enemy that requires a huge investigational effort to find its vital weak spots. Here, we provide a broad review of "old but gold" biological aspects that taken together may help in finding new TNBC management strategies. A better and updated knowledge of the origins, war-like tactics, refueling mechanisms and escape routes of TNBC, will help in moving the decisive steps towards its final defeat.


Assuntos
Envelhecimento , Suscetibilidade a Doenças , Inflamação/complicações , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias de Mama Triplo Negativas/patologia
4.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948154

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. METHODS: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. RESULTS: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16-erlotinib regimen is more effective than the selumetinib-erlotinib combination in KRAS-mutated NSCLC. CONCLUSIONS: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , MAP Quinase Quinase Quinases , MicroRNAs , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , RNA Neoplásico , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncologist ; 24(6): 743-e205, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30591548

RESUMO

LESSONS LEARNED: The androgen receptor (AR) is present in most breast cancers (BC), but its exploitation as a therapeutic target has been limited.This study explored the activity of dehydroepiandrosterone (DHEA), a precursor being transformed into androgens within BC cells, in combination with an aromatase inhibitor (to block DHEA conversion into estrogens), in a two-stage phase II study in patients with AR-positive/estrogen receptor-positive/human epidermal growth receptor 2-negative metastatic BC.Although well tolerated, only 1 of 12 patients obtained a prolonged clinical benefit, and the study was closed after its first stage for poor activity. BACKGROUND: Androgen receptors (AR) are expressed in most breast cancers, and AR-agonists have some activity in these neoplasms. We investigated the safety and activity of the androgen precursor dehydroepiandrosterone (DHEA) in combination with an aromatase inhibitor (AI) in patients with AR-positive metastatic breast cancer (MBC). METHODS: A two-stage phase II study was conducted in two patient cohorts, one with estrogen receptor (ER)-positive (resistant to AIs) and the other with triple-negative MBC. DHEA 100 mg/day was administered orally. The combination with an AI aimed to prevent the conversion of DHEA into estrogens. The main endpoint was the clinical benefit rate. The triple-negative cohort was closed early. RESULTS: Twelve patients with ER-positive MBC were enrolled. DHEA-related adverse events, reported in four patients, included grade 2 fatigue, erythema, and transaminitis, and grade 1 drowsiness and musculoskeletal pain. Clinical benefit was observed in one patient with ER-positive disease whose tumor had AR gene amplification. There was wide inter- and intra-patient variation in serum levels of DHEA and its metabolites. CONCLUSION: DHEA showed excellent safety but poor activity in MBC. Although dose and patient selection could be improved, high serum level variability may hamper further DHEA development in this setting.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Desidroepiandrosterona/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Inibidores da Aromatase/administração & dosagem , Inibidores da Aromatase/efeitos adversos , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Desidroepiandrosterona/efeitos adversos , Progressão da Doença , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores de Estrogênio/metabolismo , Critérios de Avaliação de Resposta em Tumores Sólidos , Análise de Sobrevida , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
6.
Int J Mol Sci ; 17(8)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527155

RESUMO

Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais/sangue , Neoplasias Esofágicas , Células Neoplásicas Circulantes/patologia , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Esôfago/patologia , Humanos , Prognóstico
7.
J Transl Med ; 13: 229, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26174551

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is an incurable disease with fatal infections or relapse being the main causes of death in most cases. In particular, the severe infections occurring in these patients before or during any treatment suggest an intrinsic alteration of the immune system. In this respect, IL-17-producing T helper (Th17) besides playing a key role in regulating inflammatory response, tumor growth and autoimmune diseases, have been shown to protect against bacterial and fungal pathogens. However, the role of Th17 cells in AML has not yet been clarified. METHODS: T cell frequencies were assessed by flow cytometry in the peripheral blood of 30 newly diagnosed AML patients and 30 age-matched healthy volunteers. Cytokine production was determined before and after culture of T cells with either Candida Albicans or AML blasts. Statistical analyses were carried out using the paired and unpaired two-tailed Student's t tests and confirmed with the non parametric Wilcoxon signed-rank test. RESULTS: A strong increase of Th17 cells producing immunosuppressive IL-10 was observed in AML patients compared with healthy donors. In addition, stimulation of AML-derived T cells with a Candida albicans antigen induced significantly lower IFN-γ production than that observed in healthy donors; intriguingly, depletion of patient Th17 cells restored IFN-γ production after stimulation. To address the role of AML blasts in inducing Th17 alterations, CD4+ cells from healthy donors were co-cultured with CD33+ blasts: data obtained showed that AML blasts induce in healthy donors levels of IL-10-producing Th17 cells similar to those observed in patients. CONCLUSIONS: In AML patients altered Th17 cells actively cause an immunosuppressive state that may promote infections and probably tumor escape. Th17 cells could thus represent a new target to improve AML immunotherapy.


Assuntos
Candidíase/imunologia , Terapia de Imunossupressão , Interleucina-10/biossíntese , Interleucina-17/biossíntese , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/microbiologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Crise Blástica/imunologia , Candida albicans/imunologia , Candidíase/complicações , Candidíase/microbiologia , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Humanos , Interferon gama/biossíntese , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/complicações , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Células Th17/imunologia
8.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771452

RESUMO

Approximately 7% of cancers arising in children and 1% of those arising in adults are soft tissue sarcomas (STS). Of these malignancies, rhabdomyosarcoma (RMS) is the most common. RMS survival rates using current therapeutic protocols have remained largely unchanged in the past decade. Thus, it is imperative that the main molecular drivers in RMS tumorigenesis are defined so that more precise, effective, and less toxic therapies can be designed. Curcumin, a common herbal supplement derived from plants of the Curcuma longa species, has an exceptionally low dietary biotoxicity profile and has demonstrated anti-tumorigenic benefits in vitro. In this study, the anti-tumorigenic activity of curcumin was assessed in rhabdomyosarcoma cell lines and used to identify the major pathways responsible for curcumin's anti-tumorigenic effects. Curcumin treatment resulted in cell cycle arrest, inhibited cell migration and colony forming potential, and induced apoptotic cell death. Proteome profiler array analysis demonstrated that curcumin treatment primarily influenced flux through the AKT-mammalian target of rapamycin (mTOR), signal transducer and activator of transcription (STAT), AMP-dependent kinase (AMPK), and p53 associated pathways in a rhabdomyosarcoma subtype-specific manner. Thus, the strategic, combinational therapeutic targeting of these pathways may present the best option to treat this group of tumors.


Assuntos
Antineoplásicos , Curcumina , Rabdomiossarcoma , Adulto , Criança , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Supressora de Tumor p53/genética , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
9.
Mol Ther Methods Clin Dev ; 29: 473-482, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273899

RESUMO

The identification of predictive factors for treatment of pancreatic cancer (PC) is an unmet clinical need. In the present work, we analyzed blood-derived extracellular vesicles (EVs) from patients with advanced PC in order to find a molecular signature predictive of response to therapy. We analyzed samples from 21 patients with advanced PC, all receiving first-line treatment with gemcitabine + nab-paclitaxel. Isolated EVs have been analyzed, and the results of laboratory have been matched with clinical data in order to investigate possible predictive factors. EV concentration and size were similar between responder and non-responder patients. Analysis of 37 EV surface epitopes showed a decreased expression of SSEA4 and CD81 in responder patients. We detected more than 450 expressed miRNAs in EVs. A comparative survey between responder and non-responder patients showed that at least 44 miRNAs were differently expressed. Some of these miRNAs have already been observed in relation to the survival and gemcitabine sensitivity of tumor cells. In conclusion, we showed the ability of our approach to identify EV-derived biomarkers with predictive value for therapy response in PC. Our findings are worthy of further investigation, including the analysis of samples from patients treated with different schedules and in different settings.

10.
Biomed Pharmacother ; 165: 115235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536029

RESUMO

Extracellular vesicles (EVs) act as molecular mediators in the tumor microenvironment, by shuttling information contained within malignant cells and functioning as regulators of the immune system. Circular (circ)RNAs are characterized by a closed loop-like structure that makes them more stable in the extracellular milieu and suitable to be packaged inside EVs. circPVT1 (hsa_circ_0001821) showed an oncogenic role in several cancer types and immunosuppressive properties in myeloid and lymphoid cell subsets. In this study, we characterized EVs from acute myeloid leukemia (AML) patients in terms of size, concentrations, surface markers and circPVT1 cargo. We showed that circPVT1 is overexpressed by primary blast cells from newly-diagnosed AML patients compared with hematopoietic stem-progenitor cells and is released as cell-free RNA in the plasma. We isolated EVs from the plasma of AML patients and healthy subjects by size exclusion chromatography and characterized them by nanoparticle tracking analysis. EVs from patients' plasma are larger compared with those from healthy subjects and their surface profile is characterized by higher levels of the leukemic cell markers CD133, CD105, CD49e and other immune-related epitopes, with differences according to AML molecular profile. Moreover, digital PCR analysis revealed that circPVT1 is more abundant inside EVs from the plasma of AML patients compared with healthy subjects. Our findings provide new insights on the features and content of AML EVs and suggest a role of circPVT1 in the crosstalk between AML cells and the tumor microenvironment.


Assuntos
Vesículas Extracelulares , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Vesículas Extracelulares/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Comunicação Celular , Microambiente Tumoral/genética
11.
J Cell Physiol ; 227(10): 3389-96, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22212895

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide and despite efforts made to improve clinical results, continuing poor survival rates indicate that novel therapeutic approaches are needed. Valproic acid (VPA), a short-chain branched fatty acid used mainly for the treatment of epilepsy and bipolar disorder, has been shown to inhibit class I histone deacetylases (HDAC-I), a group of enzymes involved in chromatin remodeling and which are thought to play a role in tumor development. Although evidence of VPA's therapeutic efficacy has also been observed in patients with solid tumors, the very high concentration required to induce antitumor activity limits its clinical usefulness. We used a panel of NSCLC cell lines to evaluate the activity and mechanisms of action of organosulfur valproic acid derivatives, a promising new class of compounds designed to improve the safety and efficacy of the valproic acid molecule and created by coupling it with a hydrogen sulfide (H(2) S)-releasing moiety. Our results highlighted the increased cytotoxic activity of the novel organosulfur derivatives, ACS33 and ACS2, with respect to VPA, starting from low concentrations. In particular, ACS2 exhibited important pro-apoptotic activity triggered by the mitochondrial pathway and also showed anti-invasion potential. Furthermore, our in vitro results identified a highly effective combination schedule of ACS2 and cisplatin capable of inducing a synergistic interaction even when the two drugs were used at low concentrations, which could prove a valid alternative to traditional chemotherapeutic regimens used for advanced lung cancer. Further studies are needed to confirm these preliminary findings.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Sulfeto de Hidrogênio/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ácido Valproico/análogos & derivados , Linhagem Celular Tumoral , Sinergismo Farmacológico , Histona Desacetilase 1/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Valproico/farmacologia
12.
Cancer Cell Int ; 12(1): 48, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173568

RESUMO

BACKGROUND: Zoledronic acid is used to treat bone metastases and has been shown to reduce skeletal-related events and exert antitumor activity. The present in vitro study investigates the mechanism of action of Zoledronic Acid on breast cancer cell lines with different hormonal and HER2 patterns. Furthermore, we investigated the efficacy of repeated versus non-repeated treatments. METHODS: The study was performed on 4 breast cancer cell lines (BRC-230, SkBr3, MCF-7 and MDA-MB-231). Non-repeated treatment (single exposure of 168 hrs' duration) with zoledronic acid was compared with repeated treatment (separate exposures, each of 48 hrs' duration, for a total of 168 hrs) at different dosages. A dose-response profile was generated using sulforhodamine B assay. Apoptosis was evaluated by TUNEL assay and biomolecular characteristics were analyzed by western blot. RESULTS: Zoledronic acid produced a dose-dependent inhibition of proliferation in all cell lines. Anti-proliferative activity was enhanced with the repeated treatment, proving to be statistically significant in the triple-negative lines. In these lines repeated treatment showed a cytocidal effect, with apoptotic cell death caused by caspase 3, 8 and 9 activation and decreased RAS and pMAPK expression. Apoptosis was not observed in estrogen receptor-positive line: p21 overexpression suggested a slowing down of cell cycle. A decrease in RAS and pMAPK expression was seen in HER2-overexpressing line after treatment. CONCLUSIONS: The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Repeated treatment has a killing effect on triple-negative lines due to apoptosis activation. Further research is warranted especially in the treatment of triple-negative breast cancer.

13.
PLoS One ; 17(1): e0261464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35015757

RESUMO

The expression of non-coding RNAs (ncRNAs) is dysregulated in human cancers. The transcribed ultraconserved regions (T-UCRs) express long ncRNAs involved in human carcinogenesis. T-UCRs are non-coding genomic sequence that are 100% conserved across humans, rats and mice. Conservation of genomic sequences across species intrinsically implies an essential functional role and so we considered the expression of T-UCRs in lung cancer. Using a custom microarray we analyzed the global expression of T-UCRs. Among these T-UCRs, the greatest variation was observed for antisense ultraconserved element 83 (uc.83-), which was upregulated in human lung cancer tissues compared with adjacent non cancerous tissues. Even though uc.83- is located within the long intergenic non-protein coding RNA 1876 (LINC01876) gene, we found that the transcribed uc.83- is expressed independently of LINC01876 and was cloned as a 1143-bp RNA gene. In this study, functional analysis confirmed important effects of uc.83- on genes involved in cell growth of human cells. siRNA against uc.83- decreased the growth of lung cancer cells while the upregulation through a vector overexpressing the uc.83- RNA increased cell proliferation. We also show the oncogenic function of uc.83- is mediated by the phosphorylation of AKT and ERK 1/2, two important biomarkers of lung cancer cell proliferation. Based on our findings, inhibition against uc.83- could be a future therapeutic treatment for NSCLC to achieve simultaneous blockade of pathways involved in lung carcinogenesis.


Assuntos
Carcinogênese/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima
14.
Front Med (Lausanne) ; 9: 795762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299840

RESUMO

Aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes often upregulated in cancer cells and associated with therapeutic resistance. In humans, the ALDH family comprises 19 isoenzymes active in the majority of mammalian tissues. Each ALDH isoform has a specific differential expression pattern and most of them have individual functional roles in cancer. ALDHs are overexpressed in subpopulations of cancer cells with stem-like features, where they are involved in several processes including cellular proliferation, differentiation, detoxification and survival, participating in lipids and amino acid metabolism and retinoic acid synthesis. In particular, ALDH enzymes protect cancer cells by metabolizing toxic aldehydes in less reactive and more soluble carboxylic acids. High metabolic activity as well as conventional anticancer therapies contribute to aldehyde accumulation, leading to DNA double strand breaks (DSB) through the generation of reactive oxygen species (ROS) and lipid peroxidation. ALDH overexpression is crucial not only for the survival of cancer stem cells but can also affect immune cells of the tumour microenvironment (TME). The reduction of ROS amount and the increase in retinoic acid signaling impairs immunogenic cell death (ICD) inducing the activation and stability of immunosuppressive regulatory T cells (Tregs). Dissecting the role of ALDH specific isoforms in the TME can open new scenarios in the cancer treatment. In this review, we summarize the current knowledge about the role of ALDH isoforms in solid tumors, in particular in association with therapy-resistance.

15.
Front Genet ; 13: 1012191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452152

RESUMO

Combining phenotypical and molecular characterization of rare cells is challenging due to their scarcity and difficult handling. In oncology, circulating tumor cells (CTCs) are considered among the most important rare cell populations. Their phenotypic and molecular characterization is necessary to define the molecular mechanisms underlying their metastatic potential. Several approaches that require cell fixation make difficult downstream molecular investigations on RNA. Conversely, the DEPArray technology allows phenotypic analysis and handling of both fixed and unfixed cells, enabling a wider range of applications. Here, we describe an experimental workflow that allows the transcriptomic investigation of single and pooled OE33 cells undergone to DEPArray analysis and recovery. In addition, cells were tested at different conditions (unfixed, CellSearch fixative (CSF)- and ethanol (EtOH)-fixed cells). In a forward-looking perspective, this workflow will pave the way for novel strategies to characterize gene expression profiles of rare cells, both single-cell and low-resolution input.

16.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626011

RESUMO

The importance of defining new molecules to fight cancer is of significant interest to the scientific community. In particular, it has been shown that cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity; on the other side, circulating tumor cells (CTCs) seem to split away from the primary tumor and appear in the circulatory system as singular units or clusters. It is becoming more and more important to discover new biomarkers related to these populations of cells in combination to define the network among them and the tumor microenvironment. In particular, cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment with different functions, including matrix deposition and remodeling, extensive reciprocal signaling interactions with cancer cells and crosstalk with immunity. The settings of new markers and the definition of the molecular connections may present new avenues, not only for fighting cancer but also for the definition of more tailored therapies.

17.
Pharmaceutics ; 14(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36297464

RESUMO

In recent years, circulating extracellular miRNAs have emerged as a useful tool for the molecular characterization and study of tumors' biological functions. However, the high heterogeneity in sample processing, isolation of circulating fraction, RNA extraction, and sequencing hamper the reproducibility and the introduction of these biomarkers in clinical practice. In this paper, we compare the content and the performance of miRNA sequencing in plasma-derived samples processed with different isolation protocols. We tested three different fractions of miRNA from healthy-donor human blood: whole plasma (WP), free-circulating (FC) and EV-associated, isolated by either column (ccEV) or size exclusion chromatography (secEV) miRNAs. An additional cohort of 18 lung cancer patients was analyzed. Protein profiles of ccEV and secEV were compared and miRNA expression profiles were assessed through sequencing. Slight differences were found between ccEV and secEV expressions of typical EV markers. Conversely, sequencing performance and the mirnome profile varied between RNA extracted using different isolation methods. Sequencing performance was better in FC samples. Higher varieties of miRNAs were identified in WP and FC with respect to ccEV and secEV. Analysis of free-circulating and EV-associated miRNA profiles in lung cancer patients demonstrated the reliability of the biomarkers identifiable on plasma with these approaches.

18.
Cancer Manag Res ; 14: 2119-2131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35791342

RESUMO

Introduction: Retinoblastoma (Rb) is the most common ocular paediatric malignancy and is caused by a mutation of the two alleles of the tumor suppressor gene, RB1. The tumor microenvironment (TME) represents a complex system whose function is not yet well defined and where microvesicles, such as exosomes, play a key role in intercellular communication. Micro-RNAs (mRNAs) have emerged as important modifiers of biological mechanisms involved in cancer and been able to regulate tumor progression. Methods: Co-culture of monocytes with retinoblastoma cell lines, showed a significant growth decrease. Given the interaction between Rb cells and monocytes, we investigated the role of the supernatant in the cross-talk between cell lines, by taking the product of the co-culture and then using it as a culture medium for Rb cells. Results: miR-142-3p showed to be particularly over-expressed both in the Rb cell line and in the medium used for their culture, comparing to control cell line and the normal supernatant, respectively. Therefore, we provided evidence that miR-142-3p is released by monocytes in the co-culture medium's exosomes and that it is subsequently up-taken by Rb cells, causing the inhibition of proliferation of Rb cell line by affecting cell cycle progression. Conclusion: This study highlights the role of exosomic miR-142-3p in the TME of Rb and identifies new molecular targets, which are able to control tumor growth aiming the development of a forward-looking miR-based strategy.

19.
Curr Oncol ; 29(2): 433-438, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200539

RESUMO

The risk of relapse for early breast cancer (BC) patients persists even after decades and to date, no specific and sensitive effective circulating biomarker for recurrence prediction has been identified yet. The international guidelines do not recommend the assessment of the serum tumor markers CEA and CA15-3 in the follow-up of asymptomatic early BC patients. In our institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", as part of the E.Pic.A study, which was designed to assess the economic appropriateness of integrated care pathways in early BC, the use of CEA and CA15-3 as circulating tumor biomarkers in early BC patients was evaluated in 1502 patients one year after surgery, from 2015 to 2018, with an overall expense of EUR 51,764. A total of EUR 47,780 (92%) was used for execution of circulating tumor markers in early BC patients with stage 0, I and II tumors, neglecting the current guidelines and considered inappropriate by our professional board. We found that no patients with stage I BC experienced relapse in the 365 days after surgery, and in any case examination of the circulating markers CEA and CA15-3 was considered crucial for diagnosis of relapse. Our findings suggest that this inadequacy is a low-value area, supporting the reallocation of economic resources for interventions of a higher value for patients.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Mucina-1 , Recidiva Local de Neoplasia
20.
Front Med (Lausanne) ; 9: 827206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355608

RESUMO

Metaplastic breast cancer (MpBC) is a rare tumor representing 1% of all breast malignancies. The prognosis of this histologic subtype is actually poor and there are no current clear-cut therapeutic guidelines. Hence, despite its uniqueness, its aggressive prognostic profile strongly encourages further studies to identify new markers and therapeutic targets. Herein, we report a case of 32-years-old patient affected with of triple negative spindle-shaped MpBC. The research of molecular targets on the primary tumor did not allow performing an effective therapeutic choice. Extracellular Vesicles (EVs) are under intense study as new potential pathophysiological markers and targets for therapeutic applications, in different tumors for their role in tumor onset, progression and aggressiveness. Here, we examined the involvement of EVs in this case, to look into the MpBC microenvironment willing to identify new potential molecular targets, pathways of aggressiveness, and markers of prognosis and therapeutic efficacy. Firstly, we characterized MpBC patient EV dimensions and surface proteins. Moreover, we analyzed the EV RNA cargo supposed to be delivered to nearby and distant recipient cells. Interestingly, we observed a dysregulation EV-contained miRNAs, which could determine an increased expression of oncogenes in the tumor microenvironment, probably enabling cancer progression. These data suggest that the characterization of miRNA cargo of EVs could be important for the identification of new markers and for the application of future new target therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA