Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834678

RESUMO

Kidney cancer is among the top ten most common cancers to date. Within the kidney, renal cell carcinoma (RCC) is the most common solid lesion occurring. While various risk factors are suspected, including unhealthy lifestyle, age, and ethnicity, genetic mutations seem to be a key risk factor. In particular, mutations in the von Hippel-Lindau gene (Vhl) have attracted a lot of interest since this gene regulates the hypoxia inducible transcription factors HIF-1α and HIF-2α, which in turn drive the transcription of many genes that are important for renal cancer growth and progression, including genes involved in lipid metabolism and signaling. Recent data suggest that HIF-1/2 are themselves regulated by bioactive lipids which make the connection between lipids and renal cancer obvious. This review will summarize the effects and contributions of the different classes of bioactive lipids, including sphingolipids, glycosphingolipids, eicosanoids, free fatty acids, cannabinoids, and cholesterol to renal carcinoma progression. Novel pharmacological strategies interfering with lipid signaling to treat renal cancer will be highlighted.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Lipídeos , Proteína Supressora de Tumor Von Hippel-Lindau/genética
2.
Immunology ; 160(1): 10-23, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32020584

RESUMO

Given the critical role that the immune system plays in a multitude of diseases, having a clear understanding of the pharmacology of the immune system is crucial to new drug discovery and development. Here we describe the International Union of Basic and Clinical Pharmacology (IUPHAR) Guide to Immunopharmacology (GtoImmuPdb), which connects expert-curated pharmacology with key immunological concepts and aims to put pharmacological data into the hands of immunologists. In the pursuit of new therapeutics, pharmacological databases are a vital resource to researchers through providing accurate information on the fundamental science underlying drug action. This extension to the existing IUPHAR/British Pharmacological Society Guide to Pharmacology supports research into the development of drugs targeted at modulating immune, inflammatory or infectious components of disease. To provide a deeper context for how the resource can support research we show data in GtoImmuPdb relating to a case study on the targeting of vascular inflammation.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Sistema Imunitário/diagnóstico por imagem , Fatores Imunológicos/farmacologia , Alergia e Imunologia/educação , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Humanos , Fatores Imunológicos/uso terapêutico , Mediadores da Inflamação/metabolismo , Cooperação Internacional , Terapia de Alvo Molecular/métodos , Pesquisa Farmacêutica/educação , Farmacologia Clínica/educação , Ensaios Clínicos Controlados Aleatórios como Assunto , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sociedades Científicas/organização & administração , Resultado do Tratamento
3.
J Neurochem ; 153(4): 510-524, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31618458

RESUMO

Molecular genetic aberrations in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway are common in human cancers including glioblastoma, yet, novel therapeutic approaches targeting this pathway in glioblastoma have not been successful. We hypothesized that molecular profiling in combination with in vitro drug sensitivity testing allows to identify signatures associated with sensitivity or resistance to PI3K/mTOR pathway inhibition. We analyzed the molecular mechanisms determining sensitivity to PI3K/mTOR inhibition using gene silencing or pharmacological target inhibition and proliferation, clonogenicity, or spherogenicity as readouts, in human long-term glioma cell (LTC) lines and glioma-initiating cells (GIC). Cultured glioma cells were universally sensitive to growth inhibition induced by PQR309, a novel, dual pan-PI3K/mTOR antagonist. Cells exhibited profound growth arrest, but little apoptotic or necrotic cell death as confirmed by electron microscopy; yet, there was evidence of senescence. Cell lines with high basal levels of phosphorylated (active) AKT, low levels of phosphorylated (inactive) protein translation repressor eukaryotic initiation factor (eIF) 4E-binding protein 1 (p4E-BP1), and high levels of Ser9-phosphorylated (inactive) glycogen synthase kinase 3 beta (pGSK3ß) were more sensitive to PQR309. Accordingly, the activity of PQR309 was synergistically enhanced by AKT gene silencing or direct pharmacological AKT inhibition. In vivo studies confirmed the anti-glioma activity of PQR309 alone or in combination with AKT inhibition in the orthotopic LN-229 glioma xenograft model in nude mice. These data justify to explore combined targeted therapy approaches in glioblastoma that aim at down-regulating AKT function to enhance the therapeutic potential of dual PI3K/mTOR inhibitors.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Inativação Gênica/fisiologia , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Inativação Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Distribuição Aleatória , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
IUBMB Life ; 72(6): 1094-1096, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441880

RESUMO

The 10th jubilee conference (IPK2019) took place on September 15-19, 2019 in Warsaw, on the Ochota campus as the IUBMB Focused Meeting entitled "Inhibitors of Protein Kinases. Kinase inhibitors in target biology and disease".


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo
5.
Nucleic Acids Res ; 46(D1): D1091-D1106, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29149325

RESUMO

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, www.guidetopharmacology.org) and its precursor IUPHAR-DB, have captured expert-curated interactions between targets and ligands from selected papers in pharmacology and drug discovery since 2003. This resource continues to be developed in conjunction with the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS). As previously described, our unique model of content selection and quality control is based on 96 target-class subcommittees comprising 512 scientists collaborating with in-house curators. This update describes content expansion, new features and interoperability improvements introduced in the 10 releases since August 2015. Our relationship matrix now describes ∼9000 ligands, ∼15 000 binding constants, ∼6000 papers and ∼1700 human proteins. As an important addition, we also introduce our newly funded project for the Guide to IMMUNOPHARMACOLOGY (GtoImmuPdb, www.guidetoimmunopharmacology.org). This has been 'forked' from the well-established GtoPdb data model and expanded into new types of data related to the immune system and inflammatory processes. This includes new ligands, targets, pathways, cell types and diseases for which we are recruiting new IUPHAR expert committees. Designed as an immunopharmacological gateway, it also has an emphasis on potential therapeutic interventions.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Animais , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Ligantes , Farmacologia , Proteínas/efeitos dos fármacos
6.
Chimia (Aarau) ; 74(10): 779-783, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115560

RESUMO

Notch is a key oncogenic pathway in several human cancers and to date, no targeted treatment of Notch activated cancers is available to patients. Therapeutic targeting of Notch has been an unresolved challenge due to severe on-target dose limiting toxicities associated with pan-Notch inhibition by either γ-secretase inhibitors or receptor/ligand targeting MAbs. At Cellestia Biotech, we have identified novel series of small molecule inhibitors of the Notch transcription complex. These molecules act as pan-Notch inhibitors and do not cause toxicities commonly associated with first- and second-generation Notch inhibitors currently tested in the clinic, thus providing a novel and unique opportunity to address a high unmet medical need. Our lead molecule, CB-103 is currently being investigated in Phase-1 dose escalation in cancer patients. Cellestia Biothech is further expanding its medicinal chemistry activities advancing the development of novel molecules for targeting transcription factors in cancer as well as non-cancer indications.


Assuntos
Neoplasias , Receptores Notch , Secretases da Proteína Precursora do Amiloide/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais
7.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752127

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway has been implicated as a cancer target. Big pharma players and small companies have been developing small molecule inhibitors of PI3K and/or mTOR since the 1990s. Although four inhibitors have been approved, many open questions regarding tolerability, patient selection, sensitivity markers, development of resistances, and toxicological challenges still need to be addressed. Besides clear oncological indications, PI3K and mTOR inhibitors have been suggested for treating a plethora of different diseases. In particular, genetically induced PI3K/mTOR pathway activation causes rare disorders, known as overgrowth syndromes, like PTEN (phosphatase and tensin homolog) hamartomas, tuberous sclerosis complex (TSC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-related overgrowth spectrum (PROS), and activated PI3-Kinase delta syndrome (PI3KCD, APDS). Some of those disorders likeTSC or hemimegalencephaly, which are one of the PROS disorders, also belong to a group of diseases called mTORopathies. This group of syndromes presents with additional neurological manifestations associated with epilepsy and other neuropsychiatric symptoms induced by neuronal mTOR pathway hyperactivation. While PI3K and mTOR inhibitors have been and still are intensively tested in oncology indications, their use in genetically defined syndromes and mTORopathies appear to be promising avenues for a pharmacological intervention.


Assuntos
Neoplasias/tratamento farmacológico , Doenças Raras/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Raras/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
Nucleic Acids Res ; 44(D1): D1054-68, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26464438

RESUMO

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Proteínas/efeitos dos fármacos , Ontologias Biológicas , Doença , Genoma Humano , Humanos , Internet , Ligantes , Patentes como Assunto , Fosfotransferases/antagonistas & inibidores , Proteínas/genética
9.
Biochim Biophys Acta ; 1861(11): 1840-1851, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616330

RESUMO

Breast cancer is one of the most common and devastating malignancies among women worldwide. Recent evidence suggests that malignant progression is also driven by processes involving the sphingolipid molecule sphingosine 1-phosphate (S1P) and its binding to cognate receptor subtypes on the cell surface. To investigate the effect of this interaction on the metastatic phenotype, we used the breast cancer cell line MDA-MB-231 and the sublines 4175 and 1833 derived from lung and bone metastases in nude mice, respectively. In both metastatic cell lines expression of the S1P3 receptor was strongly upregulated compared to the parental cells and correlated with higher S1P-induced intracellular calcium ([Ca2+]i), higher cyclooxygenase (COX)-2 and microsomal prostaglandin (PG) E2 synthase expression, and consequently with increased PGE2 synthesis. PGE2 synthesis was decreased by antagonists and siRNA against S1P3 and S1P2. Moreover, in parental MDA-MB-231 cells overexpression of S1P3 by cDNA transfection also increased PGE2 synthesis, but only after treatment with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, indicating reversible silencing of the COX-2 promoter. Functionally, the metastatic sublines showed enhanced migration and Matrigel invasion in adapted Boyden chamber assays, which further increased by S1P stimulation. This response was abrogated by either S1P3 antagonism, COX-2 inhibition or PGE2 receptor 2 (EP2) and 4 (EP4) antagonism, but not by S1P2 antagonism. Our data demonstrate that in breast cancer cells overexpression of S1P3 and its activation by S1P has pro-inflammatory and pro-metastatic potential by inducing COX-2 expression and PGE2 signaling via EP2 and EP4.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Dinoprostona/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Regulação para Cima , Neoplasias da Mama/genética , Cálcio/metabolismo , Celecoxib/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisofosfolipídeos/farmacologia , Invasividade Neoplásica , Metástase Neoplásica , Prostaglandina-E Sintases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
10.
Pharmacol Rev ; 66(4): 918-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25026896

RESUMO

Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Ligantes , Terminologia como Assunto , Humanos , Canais Iônicos/metabolismo , Modelos Químicos , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
11.
FASEB J ; 29(7): 2980-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25854701

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal-dominant forms of Parkinson's disease. LRRK2 is a modular, multidomain protein containing 2 enzymatic domains, including a kinase domain, as well as several protein-protein interaction domains, pointing to a role in cellular signaling. Although enormous efforts have been made, the exact pathophysiologic mechanisms of LRRK2 are still not completely known. In this study, we used a chemical genetics approach to identify LRRK2 substrates from mouse brain. This approach allows the identification of substrates of 1 particular kinase in a complex cellular environment. Several of the identified peptides are involved in the regulation of microtubule (MT) dynamics, including microtubule-associating protein (MAP)/microtubule affinity-regulating kinase 1 (MARK1). MARK1 is a serine/threonine kinase known to phosphorylate MT-binding proteins such as Tau, MAP2, and MAP4 at KXGS motifs leading to MT destabilization. In vitro kinase assays and metabolic-labeling experiments in living cells confirmed MARK1 as an LRRK2 substrate. Moreover, we also showed that LRRK2 and MARK1 are interacting in eukaryotic cells. Our findings contribute to the identification of physiologic LRRK2 substrates and point to a potential mechanism explaining the reported effects of LRRK2 on neurite morphology.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Proc Natl Acad Sci U S A ; 110(47): E4437-45, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191057

RESUMO

Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)-Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising in some patients. Using NMR and small-angle X-ray scattering, we have analyzed the solution conformations of apo Abelson tyrosine kinase (c-Abl) and c-Abl complexes with ATP-site and allosteric inhibitors. Binding of the ATP-site inhibitor imatinib leads to an unexpected open conformation of the multidomain SH3-SH2-kinase c-Abl core, whose relevance is confirmed by cellular assays on Bcr-Abl. The combination of imatinib with the allosteric inhibitor GNF-5 restores the closed, inactivated state. Our data provide detailed insights on the poorly understood combined effect of the two inhibitor types, which is able to overcome drug resistance.


Assuntos
Benzamidas/química , Proteínas de Fusão bcr-abl/química , Modelos Moleculares , Complexos Multiproteicos/química , Piperazinas/química , Conformação Proteica , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/química , Regulação Alostérica , Benzamidas/metabolismo , Isótopos de Carbono/análise , Escherichia coli , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Estrutura Molecular , Isótopos de Nitrogênio/análise , Ressonância Magnética Nuclear Biomolecular , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/metabolismo , Espalhamento a Baixo Ângulo
13.
Mol Pharmacol ; 87(5): 766-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25549667

RESUMO

Deregulation of protein and lipid kinase activities leads to a variety of pathologies, ranging from cancer inflammatory diseases, diabetes, infectious diseases, and cardiovascular disorders. Protein kinases and lipid kinases represent, therefore, an important target for the pharmaceutical industry. In fact, approximately one-third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases. To date, 30 kinase inhibitors have been approved, which, with few exceptions, are mainly for oncological indications and directed against only a handful of protein and lipid kinases, leaving 70% of the kinome untapped. Despite these successes in kinase drug discovery, the development of kinase inhibitors with outstanding selectivity, identification and validation of driver kinase(s) in diseases, and the emerging problem of resistance to the inhibition of key target kinases remain major challenges. This minireview provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Descoberta de Drogas/métodos , Humanos , Neoplasias/metabolismo , Proteínas Quinases/metabolismo
14.
Cancer Cell ; 12(3): 201-14, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17785202

RESUMO

To better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteomics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma cells. Our findings suggest that FGFR3 mediates hematopoietic transformation by activating RSK2 in a two-step fashion, promoting both the ERK-RSK2 interaction and subsequent phosphorylation of RSK2 by ERK.


Assuntos
Transformação Celular Neoplásica/metabolismo , Sistema de Sinalização das MAP Quinases , Mieloma Múltiplo/enzimologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mieloma Múltiplo/metabolismo , Fosforilação , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Tirosina/metabolismo
15.
Bioorg Med Chem Lett ; 23(13): 3741-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23726034

RESUMO

Phosphatidylinositol-3-kinase α (PI3Kα) is a therapeutic target of high interest in anticancer drug research. On the basis of a binding model rationalizing the high selectivity and potency of a particular series of 2-aminothiazole compounds in inhibiting PI3Kα, a medicinal chemistry program has led to the discovery of the clinical candidate NVP-BYL719.


Assuntos
Descoberta de Drogas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Animais , Disponibilidade Biológica , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
16.
Cancer Cell ; 7(2): 129-41, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15710326

RESUMO

The Bcr-Abl tyrosine kinase oncogene causes chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). We describe a novel selective inhibitor of Bcr-Abl, AMN107 (IC50 <30 nM), which is significantly more potent than imatinib, and active against a number of imatinib-resistant Bcr-Abl mutants. Crystallographic analysis of Abl-AMN107 complexes provides a structural explanation for the differential activity of AMN107 and imatinib against imatinib-resistant Bcr-Abl. Consistent with its in vitro and pharmacokinetic profile, AMN107 prolonged survival of mice injected with Bcr-Abl-transformed hematopoietic cell lines or primary marrow cells, and prolonged survival in imatinib-resistant CML mouse models. AMN107 is a promising new inhibitor for the therapy of CML and Ph+ ALL.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Benzamidas , Células da Medula Óssea/citologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Hematopoéticas/citologia , Mesilato de Imatinib , Concentração Inibidora 50 , Camundongos , Modelos Biológicos , Modelos Químicos , Mutação , Mycoplasma/metabolismo , Fosforilação , Piperazinas/farmacologia , Retroviridae/genética , Fatores de Tempo
17.
Nat Genet ; 36(5): 453-61, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15098032

RESUMO

The Abl kinase inhibitor imatinib mesylate is the preferred treatment for Philadelphia chromosome-positive (Ph(+)) chronic myeloid leukemia (CML) in chronic phase but is much less effective in CML blast crisis or Ph(+) B-cell acute lymphoblastic leukemia (B-ALL). Here, we show that Bcr-Abl activated the Src kinases Lyn, Hck and Fgr in B-lymphoid cells. BCR-ABL1 retrovirus-transduced marrow from mice lacking all three Src kinases efficiently induced CML but not B-ALL in recipients. The kinase inhibitor CGP76030 impaired the proliferation of B-lymphoid cells expressing Bcr-Abl in vitro and prolonged survival of mice with B-ALL but not CML. The combination of CGP76030 and imatinib was superior to imatinib alone in this regard. The biochemical target of CGP76030 in leukemia cells was Src kinases, not Bcr-Abl. These results implicate Src family kinases as therapeutic targets in Ph(+) B-ALL and suggest that simultaneous inhibition of Src and Bcr-Abl kinases may benefit individuals with Ph(+) acute leukemia.


Assuntos
Linfoma de Burkitt/enzimologia , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Quinases da Família src/fisiologia , Animais , Benzamidas , Linfoma de Burkitt/patologia , Divisão Celular/efeitos dos fármacos , Quimioterapia Combinada , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperazinas/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-hck , Pirimidinas/farmacologia , Pirróis/farmacologia , Quinases da Família src/antagonistas & inibidores
18.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123154

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Canais Iônicos , Humanos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
19.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
20.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123155

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Receptores Acoplados a Proteínas G , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA