Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273341

RESUMO

Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-ß-cyclodextrin (HP-ß-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This study aims to stabilize CD nanoaggregates using bifunctional cross-linkers and evaluate their benefits for lung drug delivery compared to pristine HP-ß-CD-SH. METHODS: The effectiveness of cross-linked HP-ß-CD-SH nanoparticles (HP-ß-CD-SH-NP) was compared to transient nanoaggregates in enhancing the activity of dexamethasone (DMS) and olive leaf extracts (OLE). DMS, a poorly soluble drug commonly used in lung treatments, and OLE, known for its antioxidant properties, were chosen. Drug-loaded HP-ß-CD-SH-NP were prepared and nebulized onto a lung epithelial Air-Liquid Interface (ALI) model, assessing drug permeation and activity. RESULTS: HP-ß-CD-SH with 25% thiolation was synthesized via microwave reaction, forming 150 nm nanoaggregates and stabilized 400 nm HP-ß-CD-SH-NP. All carriers showed good complexing ability with DMS and OLE and were biocompatible in the lung ALI model. HP-ß-CD-SH promoted DMS absorption, while stabilized HP-ß-CD-SH-NP protected against oxidative stress. CONCLUSION: HP-ß-CD-SH is promising for lung delivery, especially as stabilized nanoaggregates, offering versatile administration for labile molecules like natural extracts.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Dexametasona , Sistemas de Liberação de Medicamentos , 2-Hidroxipropil-beta-Ciclodextrina/química , Animais , Humanos , Dexametasona/química , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Dexametasona/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Compostos de Sulfidrila/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Nanopartículas/química , Administração por Inalação , Portadores de Fármacos/química , beta-Ciclodextrinas/química , Ratos
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769037

RESUMO

The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Camundongos , Animais , Excipientes , Betaína/farmacologia , Líquidos Iônicos/farmacologia , Carnitina , Soluções Oftálmicas/farmacologia , Brometos , Anti-Infecciosos/farmacologia , Antraquinonas/farmacologia , Ésteres
3.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269753

RESUMO

The goal of this study was the design and evaluation of a thiolated cyclodextrin providing high drug solubilizing and mucoadhesive properties for ocular drug delivery. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) was thiolated via a microwave-assisted method, resulting in a degree of thiolation of 33%. Mucoadhesive properties of thiolated HP-ß-CD (HP-ß-CD-SH) were determined via rheological measurements and ex vivo studies on isolated porcine cornea. Due to thiolation of HP-ß-CD, a 2-fold increase of mucus viscosity and a 1.4-fold increase in residence time on isolated corneal tissue were achieved. After instillation, the mean precorneal residence time and AUC of dexamethasone (DMS) eye drops were 4-fold and 11.7-fold enhanced by HP-ß-CD-SH, respectively. Furthermore, in the presence of HP-ß-CD-SH, a constant high level of DMS in aqueous humour between 30 and 150 min after administration was observed. These results suggest that HP-ß-CD-SH is an excellent excipient for ocular formulations of poorly soluble drugs in order to prolong their ocular residence time and bioavailability.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Córnea , Soluções Oftálmicas , Solubilidade , Suínos
5.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927715

RESUMO

As a natural polysaccharide, chitosan has good biocompatibility, biodegradability and biosecurity. The hydroxyl and amino groups present in its structure make it an extremely versatile and chemically modifiable material. In recent years, various synthetic strategies have been used to modify chitosan, mainly to solve the problem of its insolubility in neutral physiological fluids. Thus, derivatives with negative or positive fixed charge were synthesized and used to prepare innovative drug delivery systems. Positively charged conjugates showed improved properties compared to unmodified chitosan. In this review the main quaternary ammonium derivatives of chitosan will be considered, their preparation and their applications will be described to evaluate the impact of the positive fixed charge on the improvement of the properties of the drug delivery systems based on these polymers. Furthermore, the performances of the proposed systems resulting from in vitro and ex vivo experiments will be taken into consideration, with particular attention to cytotoxicity of systems, and their ability to promote drug absorption.


Assuntos
Quitosana/análogos & derivados , Sistemas de Liberação de Medicamentos , Compostos de Amônio Quaternário/química
6.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847119

RESUMO

In the era of antimicrobial resistance, the identification of new antimicrobials is a research priority at the global level. In this regard, the attention towards functional antimicrobial polymers, with biomedical/pharmaceutical grade, and exerting anti-infective properties has recently grown. The aim of this study was to evaluate the antibacterial, antibiofilm, and antiadhesive properties of a number of quaternized chitosan derivatives that have displayed significant muco-adhesive properties and wound healing promotion features in previous studies. Low (QAL) and high (QAH) molecular weight quaternized chitosan derivatives were synthetized and further modified with thiol moieties or pendant cyclodextrin, and their antibacterial activity evaluated as minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The ability of the derivatives to prevent biofilm formation was assessed by crystal violet staining. Both QAL and QAH derivatives exerted a bactericidal and/or inhibitory activity on the growth of P. aeruginosa and S. epidermidis. The same compounds also showed marked dose-dependent anti-biofilm activity. Furthermore, the high molecular weight derivative (QAH) was used to functionalize titanium plates. The successful functionalization, demonstrated by electron microscopy, was able to partially inhibit the adhesion of S. epidermidis at 6 h of incubation. The shown ability of the chitosan derivatives tested to both inhibit bacterial growth and/or biofilm formation of clinically relevant bacterial species reveals their potential as multifunctional molecules against bacterial infections.


Assuntos
Antibacterianos , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Quitosana , Materiais Revestidos Biocompatíveis , Pseudomonas aeruginosa/fisiologia , Staphylococcus epidermidis/fisiologia , Titânio , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Quitosana/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Titânio/química , Titânio/farmacologia
7.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974730

RESUMO

Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (-10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed.


Assuntos
Antioxidantes , Quitosana , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanopartículas/química , Extratos Vegetais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prunus avium/química , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Quitosana/química , Quitosana/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
8.
J Mater Sci Mater Med ; 29(4): 42, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29603020

RESUMO

The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-ß-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.


Assuntos
Quitosana/química , Dexametasona/química , Compostos de Amônio Quaternário , Água , beta-Ciclodextrinas/química , Animais , Configuração de Carboidratos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos
9.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213039

RESUMO

The present study aimed to demonstrate that Sideral® RM (SRM, Sucrosomial® Raw Material Iron) is transported across the excised intestine via a biological mechanism, and to investigate the effect that this transport route may produce on oral iron absorption, which is expected to reduce the gastrointestinal (GI) side effects caused by the bioavailability of non-absorbed iron. Excised rat intestine was exposed to fluorescein isothiocyanate (FITC)-labeled SRM in Ussing chambers followed by confocal laser scanning microscopy to look for the presence of fluorescein-tagged vesicles of the FITC-labeled SRM. To identify FITC-labeled SRM internalizing cells, an immunofluorescence analysis for macrophages and M cells was performed using specific antibodies. Microscopy analysis revealed the presence of fluorescein positive particulate structures in tissues treated with FITC-labeled SRM. These structures do not disintegrate during transit, and concentrate in macrophage cells. Iron bioavailability was assessed by determining the time-course of Fe3+ plasma levels. As references, iron contents in liver, spleen, and bone marrow were determined in healthy rats treated by gavage with SRM or ferric pyrophosphate salt (FP). SRM significantly increased both area under the curve (AUC) and clearance maxima (Cmax) compared to FP, thus increasing iron bioavailability (AUCrel = 1.8). This led to increased iron availability in the bone marrow at 5 h after single dose gavage.


Assuntos
Ferro/metabolismo , Lecitinas/metabolismo , Animais , Difosfatos/metabolismo , Absorção Intestinal , Macrófagos/metabolismo , Masculino , Microscopia Confocal , Ratos , Ratos Wistar
10.
Drug Dev Ind Pharm ; 41(12): 2069-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26204347

RESUMO

CONTEXT: Mucoadhesive nanoparticles were compared with non-aggregated constituent polymers for effect on pre-corneal residence of dexamethasone phosphate (DP) or met-enkephalin (ME), administered by eye-drops to rabbits. OBJECTIVE: Deepening the knowledge of ophthalmic nanoparticulate systems in terms of ability to prolong pre-corneal residence. MATERIALS AND METHODS: Medicated nanoparticles resulted from gelation of quaternary ammonium-chitosan conjugate or its thiolated derivative with hyaluronan in the presence of drug. Particles were analyzed by light scattering. Dialysis removed non-encapsulated drug, dynamic dialysis measured drug-polymer interactions, and lyophilization-stabilized product. Dispersions were regenerated from lyophilized products. Also solutions of non-thiolated or thiolated chitosan derivative were administered. Mean drug residence time (MRT) in tears was determined by collecting samples from lower marginal tear strip of albino rabbits using capillaries. RESULTS AND DISCUSSION: Nanoparticle size of regenerated dispersions was 400-430 nm (DP-systems), 360-370 nm (ME-systems); the drug content was 2.5 mg/mL (DP) or 0.3 mg/mL (ME). The MRT for DP nanoparticles from non-thiolated derivative was higher than that for non-aggregated polymer, due to stronger concurrent interactions of positively charged nanoparticles with ocular surface and drug. Thiolated polymer nanoparticles and non-aggregated parent polymer, both interacting weakly with DP, showed similar MRT values. The MRT of ME could only be enhanced by protecting drug from enzymatic hydrolysis. This was done by nanoparticle systems, whereas non-aggregated polymers were ineffective. CONCLUSION: Developing a nanoparticle system rather than a solution of mucoadhesive polymer, for prolonging pre-corneal residence, is convenient, provided nanoparticles interact strongly with both ocular surface and drug, or protect drug from metabolic degradation.


Assuntos
Adesivos/metabolismo , Córnea/metabolismo , Nanopartículas/metabolismo , Soluções Oftálmicas/metabolismo , Lágrimas/metabolismo , Adesivos/administração & dosagem , Animais , Córnea/efeitos dos fármacos , Dexametasona/administração & dosagem , Dexametasona/metabolismo , Masculino , Nanopartículas/administração & dosagem , Soluções Oftálmicas/administração & dosagem , Coelhos , Lágrimas/efeitos dos fármacos , Fatores de Tempo
11.
Int J Biol Macromol ; 254(Pt 3): 127939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951441

RESUMO

The aim was to design and evaluate a chitosan-based conjugate providing high mucoadhesiveness and antibacterial activity for ocular infections treatment. Chitosan was conjugated with maleic acid via amide bond formation and infrared spectroscopy. Furthermore, 2,4,6-Trinitrobenzene sulfonic acid (TNBS) allowed characterization and quantification of conjugated groups, respectively. Biocompatibility was tested via hemolysis assay and Hen's Egg-Chorioallantoic membrane test. Characterization of the pH and osmolarity of hydrogels was followed by mucoadhesion assessment utilizing rheology. In addition, antibacterial studies were carried out towards Escherichia coli by broth microdilution test and agar-disk diffusion assay. In vivo studies were carried out following the already established Draize test and determining pharmacokinetic profile of dexamethasone in aqueous humour. The conjugate exhibited a degree of modification of 50.05 % and no toxicity or irritability. Moreover, mucoadhesive properties were enhanced in 2.68-fold and 1.81-fold for elastic and viscous modulus, respectively. Furthermore, rheological synergism revealed the presence of a gel-like structure. Additionally, broth microdilution and agar disk diffusion studies exhibited enhancement in antibacterial activity. Finally, in vivo studies manifested that hydrogels were highly tolerated, evidencing promising characteristics of the developed conjugate. The conjugate presented promising antimicrobial, long lasting mucoadhesive features and highly improved pharmacokinetics, leading to a revolutionizing approach in the treatment of ocular bacterial infections.


Assuntos
Quitosana , Hidrogéis , Animais , Feminino , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , Ágar , Galinhas , Antibacterianos/farmacologia , Antibacterianos/química
12.
Antioxidants (Basel) ; 13(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38247501

RESUMO

Olive leaves are an abundant by-product of olive oil production. Olive leaf extracts (OLEs) are rich in polyphenols, which can be used for health benefits. As polyphenols are the main antioxidant molecules in plants, plants typically increase their polyphenol content when exposed to drought stress. However, the phenolic profile of OLEs can vary in relation to the origin and variety of the plant material. In this work, olive leaf extracts from three different Italian olive cultivars (Giarraffa, Leccino, and Maurino) both exposed and not exposed to drought stress were studied in terms of antioxidant properties and profile, intestinal permeation, and protection against oxidative stress of human umbilical vein endothelial cells (HUVECs), since HUVECs are considered a model to study a wide range of diseases. OLEs from stressed Maurino and Giarraffa plants showed the highest increase in antioxidant capacity compared to controls. The phenolic profile of Maurino' was mainly increased by water deficit, with a large increase in the compounds oleuropein and luteolin-7-O-rutinoside. All tested extracts exposed to a water deficit protected HUVECs against oxidative stress by reducing ROS production, and this effect was more pronounced in OLEs from Giarraffa and Maurino exposed to drought stress compared to all other extracts. Finally, OLE from the stressed Giarraffa group showed a higher apparent permeability of antioxidant molecules than that of Maurino.

13.
Pharmaceutics ; 16(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339257

RESUMO

BACKGROUND: Phosphodiesterase (PDE) inhibitors are gaining interest in the context of pulmonary pathologies. In particular, the PDE3 inhibitor enoximone (ENXM) has shown potential relative to the cure of asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Despite its administration via inhalation being planned for use against COVID-19 related ARDS (C-ARDS), presently, no inhalable medicine containing ENXM is available. OBJECTIVES: This study aims to develop a new formulation suitable for pulmonary administration of ENXM. METHODS: A solution for nebulization, based on the complex between ENXM and Hydroxypropyl-ß-Cyclodextrin (HPßCD) (ENXM/HPßCD) is developed. The obtained solution is characterized in terms of aerodynamic distributions and biopharmaceutical features. RESULTS: The evaluation of the aerosol droplets indicates a good bronchi-lung distribution of the drug. Biological evaluations of the air-liquid interface (ALI) in an in vitro lung cell model demonstrates that ENXM/HPßCD is capable of a local direct effect, increasing intracellular cyclic adenosine monophosphate (cAMP) levels and protecting from oxidative stress. CONCLUSIONS: This study offers a promising advance in the optimization of enoximone delivery to the lungs.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37906132

RESUMO

BACKGROUND: Specific screening for anxiety and depression in pregnant women is important to identify those at risk and to provide timely intervention. The aims of the study were: 1) to compare the risk of anxiety and depression in four groups of pregnant women belonging to four types of healthcare centers distinguished by the level of risk: at low-risk; at high-risk for an obstetric reason; at high-risk for fetal anomalies; at high-risk for psychiatric conditions and 2) to identify the response that the National Health Service offers to women positively screened for anxiety and depression. METHODS: A cross-sectional study was conducted on 2801 pregnant women, cared for by National Health Service, divided into four groups: 1) low-risk pregnancy (N.=1970); 2) high-risk pregnancy for an obstetric reason (N.=218); 3) high-risk for fetal anomalies (N.=505); and 4) high-risk for psychiatric conditions (N.=108). Participants were screened using the Edinburgh Postnatal Depression Scale, the General Anxiety Disorder, and sociodemographic, anamnestic, and clinic questionnaires. RESULTS: 28.9% of participants obtained an EPDS Score ≥9 and 17.1% a GAD-7 Score ≥8. The group at high-risk for fetal anomalies presented the highest prevalence of anxiety (29.3%) and depression (49.1%) while the group at low risk presented the lowest prevalence of anxiety (13%) and depression (24.6%). The groups at risk for obstetric reasons presented an intermediate prevalence. Psychiatric conditions constituted a higher risk for anxiety than depression. Counselling is recommended for about 70% of women at risk for anxiety and depression. Moreover, about 15% of women positive for screening were initiated into psychotherapy and about 1.5% into pharmacotherapy. 15% of women positive for screening were referred to other specialists. CONCLUSIONS: This study underlined the relevance of a prompt response by the National Health Service to mental health needs, especially in the risk conditions related to obstetric and/or fetal anomalies and psychopathology.

15.
Foods ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36496668

RESUMO

Bergamot essential oil (BEO) possess antimicrobial, antiproliferative, anti-inflammatory, analgesic, neuroprotective, and cardiovascular effects. However, it is rich in volatile compounds, e.g., limonene, that are susceptible to conversion and degradation reactions. The aim of this communication was to prepare a conjugate based on a quaternary ammonium chitosan derivative (QA-Ch) and methyl-ßCD (MCD), coded as BEO/QA-Ch-MCD, to encapsulate BEO in order to stabilize its volatile compounds, eliminate its unpleasant taste, and convert the oil in a solid dosage form. The obtained conjugate, BEO/QA-Ch-MCD, was highly soluble and had a percentage of extract association efficiency (AE %), in terms of polyphenols and limonene contents, of 22.0 ± 0.9 and 21.9 ± 1.2, respectively. Moreover, stability studies under UV stress in simulated gastric fluid showed that BEO/QA-Ch-MCD was more able to protect polyphenols and limonene from degradation compared to free BEO or BEO complexed with MCD (BEO/MCD). The complexation and subsequent lyophilization allowed the transformation of a liquid into a solid dosage form capable of eliminating the unpleasant taste of the orally administered oil and rendering the solid suitable to produce powders, granules, tablets, etc. These solid oral dosage forms, as they come into contact with physiological fluids, could generate nanosized agglomerates able to increase the stability of their active contents and, consequently, their bioavailability.

16.
Pharmaceutics ; 13(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34959476

RESUMO

Olive leaves extract (OLE) has been extensively studied as antioxidant and antibiotic and these characteristics make it particularly interesting for use on wounds. For this reason, the aim of this study was to introduce OLE in microparticles (MP) of hyaluronic acid (MPHA-OLE) or chitosan (MPCs-OLE) to obtain a spray patch for the treatment of wounds in anatomical areas that are difficult to protect with traditional patches. The MP were characterized for particle size and ability to protect OLE from degradation, to absorb water from wound exudate, to control OLE release from MP. The MPHA and MPCs medicated or not and mixtures of the two types in different proportions were studied in vitro on fibroblasts by the scratch wound healing assay. The MP size was always less than 5 µm, and therefore, suitable for a spray patch. The MPCs-OLE could slow down the release of OLE therefore only about 60% of the polyphenols contained in it were released after 4 h. Both MPHA and MPCs could accelerate wound healing. A 50% MPHA-OLE-50% MPCs-OLE blend was the most suitable for accelerating wound healing. The MPHA-OLE-MPCs-OLE blends studied in this work were shown to have the characteristics suitable for a spray patch, thus giving a second life to the waste products of olive growers.

17.
J Pharm Biomed Anal ; 177: 112852, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31499432

RESUMO

The effect of insertion of SH and S-protected groups on the binding and mucoadhesion properties of quaternary ammonium-chitosans and their nanoparticulate forms has been investigated by NMR spectroscopy. Diclofenac sodium salt has been assumed as low molecular weight probe to detect the different binding behaviour of polymeric materials; mucin from bovine submaxillary glands was selected as the model protein for differentiating their mucoadhesion. NMR proton selective relaxation rates of the probe molecule were remarkably sensitive to the presence of very low amounts of sulfurated moieties. Impact of supramolecular aggregation in nanostructured species was demonstrated as well as the relevance of S-protection.


Assuntos
Diclofenaco/administração & dosagem , Portadores de Fármacos/química , Mucosa/metabolismo , Nanopartículas/química , Adesividade , Animais , Bovinos , Quitosana/química , Quitosana/metabolismo , Portadores de Fármacos/metabolismo , Peso Molecular , Mucinas/metabolismo , Nanopartículas/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Enxofre/química
18.
Foods ; 9(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079234

RESUMO

Cherry fruit has a high content in flavonoids. These are important diet components protecting against oxidative stress, inflammation, and endothelial dysfunction, which are all involved in the pathogenesis of atherosclerosis, which is the major cause of cardiovascular diseases (CVD). Since the seasonal availability of fresh fruit is limited, research has been focused on cherry extract (CE), which also possesses a high nutraceutical potential. Many clinical studies have demonstrated the nutraceutical efficacy of fresh cherries, but only a few studies on CE antioxidant and anti-inflammatory activities have been carried out. Here, the results concerning the antioxidant and anti-inflammatory activities of CE are reviewed. These were obtained by an in vitro model based on Human Umbilical Vein Endothelial Cells (HUVEC). To clarify the CE mechanism of action, cells were stressed to induce inflammation and endothelial dysfunction. Considering that antioxidants' polyphenol compounds are easily degraded in the gastrointestinal tract, recent strategies to reduce the degradation and improve the bioavailability of CE are also presented and discussed. In particular, we report on results obtained with nanoparticles (NP) based on chitosan derivatives (Ch-der), which improved the mucoadhesive properties of the chitosan polymers, as well as their positive charge, to favor high cellular interaction and polyphenols intestinal absorption, compared with a non-mucoadhesive negative surface charged poly(lactic-co-glycolic) acid NP. The advantages and safety of different nanosystems loaded with natural CE or other nutraceuticals are also discussed.

19.
Polymers (Basel) ; 12(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092950

RESUMO

Cyclodextrin-grafted polymers are attractive biomaterials that could bring together the host-guest complexing capability of pristine cyclodextrin and the pharmaceutical features of the polymeric backbone. The present paper is aimed at characterizing the potential application of ammonium-chitosan grafted with 2-methyl-ß-cyclodextrin (N+-rCh-MCD) as the functional macromolecular complexing agent for the oral administration of the neuropeptide dalargin (DAL). Specific NMR characterization procedures, along with UV and fluorescence techniques, as well as biological in vitro assessments have been performed. The results indicate that N+-rCh-MCD forms water-soluble complexes with DAL, with a prevalent involvement of Tyr or Phe over Leu and Ala residues. The association constant of DAL with the polymeric derivative is one order of magnitude higher than that with the pristine cyclodextrin (Ka: 2600 M-1 and 120 M-1, respectively). Additionally, N+-rCh-MCD shields DAL from enzymatic degradation in gastrointestinal in vitro models with a three-fold time delay, suggesting a future pharmaceutical exploitation of the polymeric derivative. Therefore, the greater affinity of N+-rCh-MCD for DAL and its protective effect against enzymatic hydrolysis can be attributed to the synergistic cooperation between cyclodextrin and the polymer, which is realized only when the former is covalently linked to the latter.

20.
Antioxidants (Basel) ; 9(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028655

RESUMO

BACKGROUND: Recent studies have highlighted the importance of cherry and cocoa extracts consumption to protect cells from oxidative stress, paying particular attention to cocoa by-products. This study aims to investigate the protective effect of cocoa husk extract (CHE) and cherry extracts (CE) against ROS-induced oxidative stress in Human Umbilical Vein Endothelial Cells (HUVECs). METHODS: CE and CHE had antioxidant activity characterized by total polyphenols content (TPC). HUVECs were treated for 2 h and 24 h with increasing TPC concentrations of CE and CHE (5-10-25-50-100 µg Gallic Acid Equivalent (GAE)/mL) and then with H2O2 for 1 h. Cell viability and ROS production were evaluated. CE and CHE polyphenols permeability on excised rat intestine were also studied. RESULTS: CE and CHE showed a similar antioxidant activity (2.5 ± 0.01 mmol Fe2+/100 g FW (fresh weight) and 2.19 ± 0.09 mmol Fe2+/100 g FW, respectively, p > 0.05) whereas CHE had a higher TPC (7105.0 ± 96.9 mg GAE/100 g FW) than CE (402.5 ± 8.4 mg GAE/100 g), p < 0.05. The in vitro viability assay showed that both extracts were non-cytotoxic. CHE resulted in protection against ROS at lower concentrations than CE. CHE showed a 2-fold higher apparent permeability compared to CE. CONCLUSIONS: CHE represents a high-value antioxidant source, which is interesting for the food and pharmaceutical industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA