Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 28(3): 419-426, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35285552

RESUMO

BACKGROUND: There is scarcity of imaging and image processing techniques for accurate discrimination and quantitation of the dermal extracellular matrix (ECM), primarily collagen. The aim of this study was to develop and demonstrate a holistic imaging and image processing approach to visualize and quantify collagen remodeling at the macro-, micro- and nano-scale using histochemical imaging, Reflectance Confocal Microscopy (RCM), and Atomic Force Microscopy (AFM), respectively. MATERIAL AND METHODS: For proof-of-concept, a commercial anti-aging product known to induce collagen neo-synthesis and re-organization was tested ex vivo on human skin biopsies from two aged females. RESULTS: Relative to untreated skin, collagen fibers (RCM) and fibrils (AFM) were longer and aligned after treatment. The content of collagen and elastin (histochemical imaging and ELISA) statistically improved after treatment. CONCLUSION: Based on our findings, we can conclude: (1) AFM, RCM, and histochemical imaging can accurately discriminate collagen from other ECM components in the skin and (2) the image processing methods can enable quantitation and hence capture small improvements in collagen remodeling after treatment (commercial cosmetic product with collagen organizer technology as proof-of-concept). The reported holistic imaging approach has direct clinical implications for scientists and dermatologists to make quick, real-time, and accurate decisions in skin research and diagnostics.


Assuntos
Colágeno , Matriz Extracelular , Idoso , Envelhecimento , Feminino , Humanos , Microscopia Confocal/métodos , Pele/diagnóstico por imagem
2.
Microorganisms ; 10(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36144293

RESUMO

An in situ study was conducted to examine the mode of action of a 0.454% stannous fluoride (SnF2)-containing dentifrice in controlling the composition and properties of oral biofilm. Thirteen generally healthy individuals participated in the study. Each participant wore an intra-oral appliance over a 48-h period to measure differences in the resulting biofilm's architecture, mechanical properties, and bacterial composition after using two different toothpaste products. In addition, metatranscriptomics analysis of supragingival plaque was conducted to identify the gene pathways influenced. The thickness and volume of the microcolonies formed when brushing with the SnF2 dentifrice were dramatically reduced compared to the control 0.76% sodium monofluorophosphate (MFP)-containing toothpaste. Similarly, the biophysical and nanomechanical properties measured by atomic force microscopy (AFM) demonstrated a significant reduction in biofilm adhesive properties. Metatranscriptomic analysis identified pathways associated with biofilm formation, cell adhesion, quorum sensing, and N-glycosylation that are significantly downregulated with SnF2. This study provides a clinically relevant snapshot of how the use of a stabilized, SnF2 toothpaste formulation can change the spatial organization, nanomechanical, and gene expression properties of bacterial communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA