Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16193043

RESUMO

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Ecossistema , Água do Mar/química , Ácidos/análise , Animais , Antozoários/metabolismo , Atmosfera/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Oceanos e Mares , Plâncton/química , Plâncton/metabolismo , Termodinâmica , Fatores de Tempo , Incerteza
3.
Ann N Y Acad Sci ; 1134: 320-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18566099

RESUMO

Ocean acidification is rapidly changing the carbonate system of the world oceans. Past mass extinction events have been linked to ocean acidification, and the current rate of change in seawater chemistry is unprecedented. Evidence suggests that these changes will have significant consequences for marine taxa, particularly those that build skeletons, shells, and tests of biogenic calcium carbonate. Potential changes in species distributions and abundances could propagate through multiple trophic levels of marine food webs, though research into the long-term ecosystem impacts of ocean acidification is in its infancy. This review attempts to provide a general synthesis of known and/or hypothesized biological and ecosystem responses to increasing ocean acidification. Marine taxa covered in this review include tropical reef-building corals, cold-water corals, crustose coralline algae, Halimeda, benthic mollusks, echinoderms, coccolithophores, foraminifera, pteropods, seagrasses, jellyfishes, and fishes. The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO(2) emissions debate and make it clear that the human dependence on fossil fuels must end quickly. Political will and significant large-scale investment in clean-energy technologies are essential if we are to avoid the most damaging effects of human-induced climate change, including ocean acidification.


Assuntos
Ecossistema , Água do Mar/química , Poluição da Água/prevenção & controle , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares
4.
Ann Rev Mar Sci ; 1: 169-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21141034

RESUMO

Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.


Assuntos
Dióxido de Carbono/química , Ecossistema , Água do Mar/química , Ácidos/química , Animais , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Concentração de Íons de Hidrogênio , Invertebrados/fisiologia , Oceanos e Mares
5.
Science ; 322(5907): 1466; author reply 1466, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19056960

RESUMO

Iglesias-Rodriguez et al. (Research Articles, 18 April 2008, p. 336) reported that the coccolithophore Emiliania huxleyi doubles its organic matter production and calcification in response to high carbon dioxide partial pressures, contrary to previous laboratory and field studies. We argue that shortcomings in their experimental protocol compromise the interpretation of their data and the resulting conclusions.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono , Fitoplâncton/fisiologia , Atmosfera , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento , Projetos de Pesquisa
6.
Science ; 305(5682): 362-6, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15256664

RESUMO

Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 +/- 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.


Assuntos
Carbonato de Cálcio/análise , Dióxido de Carbono , Invertebrados/fisiologia , Plâncton/fisiologia , Água do Mar/química , Animais , Antozoários/fisiologia , Atmosfera , Calcificação Fisiológica , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Clorófitas/fisiologia , Ecossistema , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Indústrias , Oceanos e Mares , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA