Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nat Immunol ; 23(4): 581-593, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347285

RESUMO

Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.


Assuntos
Osso Etmoide , Vasos Linfáticos , Animais , Osso Etmoide/fisiologia , Linfangiogênese/fisiologia , Sistema Linfático , Doenças Neuroinflamatórias
3.
Trends Immunol ; 42(11): 940-942, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656427

RESUMO

A new study by Da Mesquita et al. reports on how meningeal lymphatic modulation may influence amyloid-beta immunotherapy and microglial function in mouse models of Alzheimer's disease (AD). This research has broad implications for unraveling the role meningeal lymphatics may play in regulating immunity in the brain during AD pathology and treatment.


Assuntos
Doença de Alzheimer , Vasos Linfáticos , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo , Modelos Animais de Doenças , Humanos , Imunoterapia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Meninges/metabolismo , Meninges/patologia , Camundongos , Camundongos Transgênicos
4.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882557

RESUMO

The complex pathophysiology of post-traumatic brain damage might need a polypharmacological strategy with a combination of drugs that target multiple, synergistic mechanisms. We currently tested a combination of apocynin (curtails formation of reactive oxygen species; ROS), tert-butylhydroquinone (promotes disposal of ROS), and salubrinal (prevents endoplasmic reticulum stress) following a moderate traumatic brain injury (TBI) induced by controlled cortical impact in adult mice. Adult mice of both sexes treated with the above tri-combo showed alleviated motor and cognitive deficits, attenuated secondary lesion volume, and decreased oxidative DNA damage. Concomitantly, tri-combo treatment regulated post-TBI inflammatory response by decreasing the infiltration of T cells and neutrophils and activation of microglia in both sexes. Interestingly, sexual dimorphism was seen in the case of TBI-induced microgliosis and infiltration of macrophages in the tri-combo treated mice. Moreover, the tri-combo treatment prevented TBI-induced white matter volume loss in both sexes. The beneficial effects of tri-combo treatment were long-lasting and were also seen in aged mice. Thus, the present study supports the tri-combo treatment to curtail oxidative stress and endoplasmic reticulum stress concomitantly as a therapeutic strategy to improve TBI outcomes.SIGNIFICANCE STATEMENTOf the several mechanisms that contribute to TBI pathophysiology, oxidative stress, endoplasmic reticulum (ER) stress, and inflammation play a major role. The present study shows the therapeutic potential of a combination of apocynin, tert-butylhydroquinone, and salubrinal to prevent oxidative stress and ER stress and the interrelated inflammatory response in mice subjected to TBI. The beneficial effects of the tri-combo include alleviation of TBI-induced motor and cognitive deficits and lesion volume. The neuroprotective effects of the tri-combo are also linked to its ability to prevent TBI-induced white matter damage. Importantly, neuroprotection by the tri-combo treatment was observed to be not dependent on sex or age. Our data demonstrate that a polypharmacological strategy is efficacious after TBI.

5.
J Immunol ; 207(4): 1065-1077, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321229

RESUMO

CNS tuberculosis (CNSTB) is the most severe manifestation of extrapulmonary tuberculosis infection, but the mechanism of how mycobacteria cross the blood-brain barrier (BBB) is not well understood. In this study, we report a novel murine in vitro BBB model combining primary brain endothelial cells, Mycobacterium bovis bacillus Calmette-Guérin-infected dendritic cells (DCs), PBMCs, and bacterial Ag-specific CD4+ T cells. We show that mycobacterial infection limits DC mobility and also induces cellular cluster formation that has a similar composition to pulmonary mycobacterial granulomas. Within the clusters, infection from DCs disseminates to the recruited monocytes, promoting bacterial expansion. Mycobacterium-induced in vitro granulomas have been described previously, but this report shows that they can form on brain endothelial cell monolayers. Cellular cluster formation leads to cluster-associated damage of the endothelial cell monolayer defined by mitochondrial stress, disorganization of the tight junction proteins ZO-1 and claudin-5, upregulation of the adhesion molecules VCAM-1 and ICAM-1, and increased transmigration of bacteria-infected cells across the BBB. TNF-α inhibition reduces cluster formation on brain endothelial cells and mitigates cluster-associated damage. These data describe a model of bacterial dissemination across the BBB shedding light on a mechanism that might contribute to CNS tuberculosis infection and facilitate treatments.


Assuntos
Barreira Hematoencefálica/imunologia , Células Dendríticas/imunologia , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Endoteliais/imunologia , Granuloma/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Molécula 1 de Adesão de Célula Vascular/imunologia
6.
J Neuroinflammation ; 19(1): 125, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624463

RESUMO

BACKGROUND: Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention. METHODS: To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling. RESULTS: Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (TFH) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing TFH cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro. CONCLUSION: These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Quimiocina CXCL13/metabolismo , Humanos , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Interleucinas , Isquemia/patologia , Janus Quinases/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia
7.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502395

RESUMO

Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood-brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.


Assuntos
Neuroimunomodulação/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Animais , Transporte Biológico , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiologia , Homeostase , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunidade , Leucócitos , Linfangiogênese , Vasos Linfáticos , Neuroimunomodulação/fisiologia
8.
J Neurosci ; 38(32): 7058-7071, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29959236

RESUMO

T cells continuously sample CNS-derived antigens in the periphery, yet it is unknown how they sample and respond to CNS antigens derived from distinct brain areas. We expressed ovalbumin (OVA) neoepitopes in regionally distinct CNS areas (Cnp-OVA and Nes-OVA mice) to test peripheral antigen sampling by OVA-specific T cells under homeostatic and neuroinflammatory conditions. We show that antigen sampling in the periphery is independent of regional origin of CNS antigens in both male and female mice. However, experimental autoimmune encephalomyelitis (EAE) is differentially influenced in Cnp-OVA and Nes-OVA female mice. Although there is the same frequency of CD45high CD11b+ CD11c+ CX3CL1+ myeloid cell-T-cell clusters in neoepitope-expressing areas, EAE is inhibited in Nes-OVA female mice and accelerated in CNP-OVA female mice. Accumulation of OVA-specific T cells and their immunomodulatory effects on EAE are CX3C chemokine receptor 1 (CX3CR1) dependent. These data show that despite similar levels of peripheral antigen sampling, CNS antigen-specific T cells differentially influence neuroinflammatory disease depending on the location of cognate antigens and the presence of CX3CL1/CX3CR1 signaling.SIGNIFICANCE STATEMENT Our data show that peripheral T cells similarly recognize neoepitopes independent of their origin within the CNS under homeostatic conditions. Contrastingly, during ongoing autoimmune neuroinflammation, neoepitope-specific T cells differentially influence clinical score and pathology based on the CNS regional location of the neoepitopes in a CX3CR1-dependent manner. Altogether, we propose a novel mechanism for how T cells respond to regionally distinct CNS derived antigens and contribute to CNS autoimmune pathology.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Células-Tronco Neurais/imunologia , Neuroimunomodulação/fisiologia , Oligodendroglia/imunologia , Subpopulações de Linfócitos T/imunologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CX3CL1/fisiologia , Feminino , Genes Sintéticos , Camundongos , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/genética , Nestina/genética , Especificidade de Órgãos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
9.
Mult Scler ; 25(1): 81-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29064315

RESUMO

BACKGROUND: The hygiene hypothesis suggests that microbial replacement may be therapeutic in allergic and autoimmune diseases. Nevertheless, the results of helminth treatment, including in multiple sclerosis (MS), have been inconclusive. OBJECTIVE: To assess safety and brain magnetic resonance imaging (MRI) activity in subjects with relapsing-remitting multiple sclerosis (RRMS) during oral administration of ova from the porcine whipworm, Trichuris suis (TSO). METHODS: A total of 16 disease-modifying treatment (DMT) naive RRMS subjects were studied in a baseline versus treatment (BVT) controlled prospective study. MRI scans were performed during 5 months of screening-observation, 10 months of treatment, and 4 months of post-treatment surveillance. RESULTS: No serious symptoms or adverse events occurred during treatment. For the cohort, there was a trend consistent with a 35% diminution in active lesions when observation MRIs were compared to treatment MRIs ( p = 0.08), and at the level of individuals, 12 of 16 subjects improved during TSO treatment. T regulatory lymphocytes were increased during TSO treatment. CONCLUSION: TSO is safe in RRMS subjects. Potentially favorable MRI outcomes and immunoregulatory changes were observed during TSO treatment; however, the magnitude of these effects was modest, and there was considerable variation among the responses of individual subjects.


Assuntos
Helmintíase , Imunoterapia/métodos , Esclerose Múltipla Recidivante-Remitente/terapia , Avaliação de Resultados em Cuidados de Saúde , Trichuris , Adulto , Animais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Óvulo , Estudos Prospectivos , Linfócitos T Reguladores , Adulto Jovem
10.
Immunology ; 154(3): 363-376, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29494762

RESUMO

Stroke is one of the leading causes of death and disability worldwide. The long-standing dogma that stroke is exclusively a vascular disease has been questioned by extensive clinical findings of immune factors that are associated mostly with inflammation after stroke. These have been confirmed in preclinical studies using experimental animal models. It is now accepted that inflammation and immune mediators are critical in acute and long-term neuronal tissue damage and healing following thrombotic and ischaemic stroke. Despite mounting information delineating the role of the immune system in stroke, the mechanisms of how inflammatory cells and their mediators are involved in stroke-induced neuroinflammation are still not fully understood. Currently, there is no available treatment for targeting the acute immune response that develops in the brain during cerebral ischaemia. No new treatment has been introduced to stroke therapy since the discovery of tissue plasminogen activator therapy in 1996. Here, we review current knowledge of the immunity of stroke and identify critical gaps that hinder current therapies. We will discuss advances in the understanding of the complex innate and adaptive immune responses in stroke; mechanisms of immune cell-mediated and factor-mediated vascular and tissue injury; immunity-induced tissue repair; and the importance of modulating immunity in stroke.


Assuntos
Imunidade , Acidente Vascular Cerebral/imunologia , Imunidade Adaptativa , Animais , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Microglia/imunologia , Microglia/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Estresse Fisiológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Cicatrização/imunologia
11.
Brain Behav Immun ; 66: 277-288, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28739513

RESUMO

Exposure to inflammation during pregnancy has been linked to adverse neurodevelopmental consequences for the offspring. One common route through which a developing fetus is exposed to inflammation is with intrauterine inflammation. To that end, we utilized an animal model of intrauterine inflammation (IUI; intrauterine lipopolysaccharide (LPS) administration, 50µg, E15) to assess placental and fetal brain inflammatory responses, white matter integrity, anxiety-related behaviors (elevated zero maze, light dark box, open field), microglial counts, and the CNS cytokine response to an acute injection of LPS in both males and females. These studies revealed that for multiple endpoints (fetal brain cytokine levels, cytokine response to adult LPS challenge) male IUI offspring were uniquely affected by intrauterine inflammation, while for other endpoints (behavior, microglial number) both sexes were similarly affected. These data advance our understanding of sex-specific effects of early life exposure to inflammation in a translationally- relevant model.


Assuntos
Encéfalo/metabolismo , Encefalite/metabolismo , Inflamação/complicações , Complicações na Gravidez/metabolismo , Caracteres Sexuais , Doenças Uterinas/complicações , Doenças Uterinas/metabolismo , Substância Branca/patologia , Animais , Comportamento Animal , Encéfalo/embriologia , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/genética , Feminino , Inflamação/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Camundongos , Placenta/metabolismo , Gravidez , Complicações na Gravidez/induzido quimicamente , Doenças Uterinas/induzido quimicamente
12.
J Immunol ; 194(2): 531-41, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505278

RESUMO

Dendritic cells (DCs)--although absent from the healthy CNS parenchyma--rapidly accumulate within brain and spinal cord tissue during neuroinflammation associated with experimental autoimmune encephalomyelitis (EAE; a mouse model of multiple sclerosis). Yet, although DCs have been appreciated for their role in initiating adaptive immune responses in peripheral lymphoid organ tissues, how DCs infiltrate the CNS and contribute to ongoing neuroinflammation in situ is poorly understood. In this study, we report the following: 1) CD11c(+) bone marrow-derived DCs and CNS-infiltrating DCs express chemokine receptor CCR2; 2) compared with CCR2(+/+) cells, adoptively transferred CCR2(-/-) bone marrow-derived DCs or DC precursors do not accumulate in the CNS during EAE, despite abundance in blood; 3) CCR2(-/-) DCs show less accumulation in the inflamed CNS in mixed bone marrow chimeras, when compared with CCR2(+/+) DCs; and 4) ablation of CCR2(+/+) DCs during EAE clinical onset delays progression and attenuates cytokine production by infiltrating T cells. Whereas the role of CCR2 in monocyte migration into the CNS has been implicated previously, the role of CCR2 in DC infiltration into the CNS has never been directly addressed. Our data suggest that CCR2-dependent DC recruitment to the CNS during ongoing neuroinflammation plays a crucial role in effector T cell cytokine production and disease progression, and signify that CNS-DCs and circulating DC precursors might be key therapeutic targets for suppressing ongoing neuroinflammation in CNS autoimmune diseases.


Assuntos
Encéfalo/imunologia , Movimento Celular/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptores CCR2/imunologia , Medula Espinal/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Encéfalo/patologia , Movimento Celular/genética , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Receptores CCR2/genética , Medula Espinal/patologia , Linfócitos T/patologia , Quimeras de Transplante/imunologia
13.
J Neurosci ; 35(13): 5293-306, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834054

RESUMO

The demyelinating disease multiple sclerosis (MS) has an early inflammatory phase followed by an incurable progressive phase with subdued inflammation and poorly understood neurodegenerative mechanism. In this study, we identified various parallelisms between progressive MS and the dysmyelinating mouse model Shiverer and then genetically deleted a major neuron-specific mitochondrial anchoring protein Syntaphilin (SNPH) from the mouse. Prevailing evidence suggests that deletion of SNPH is harmful in demyelination. Surprisingly, SNPH deletion produces striking benefits in the Shiverer by prolonging survival, reducing cerebellar damage, suppressing oxidative stress, and improving mitochondrial health. In contrast, SNPH deletion does not benefit clinical symptoms in experimental autoimmune encephalomyelitis (EAE), a model for early-phase MS. We propose that deleting mitochondrial anchoring is a novel, specific treatment for progressive MS.


Assuntos
Modelos Animais de Doenças , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Esclerose Múltipla Crônica Progressiva/genética , Animais , Cerebelo/patologia , Cerebelo/ultraestrutura , Encefalomielite Autoimune Experimental/genética , Substância Cinzenta/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Esclerose Múltipla Crônica Progressiva/terapia , Proteínas do Tecido Nervoso , Estresse Oxidativo/genética , Análise de Sobrevida , Substância Branca/patologia
14.
Am J Pathol ; 185(2): 432-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25597700

RESUMO

Granulomatous inflammation is characteristic of many autoimmune and infectious diseases. The lymphatic drainage of these inflammatory sites remains poorly understood, despite an expanding understanding of lymphatic role in inflammation and disease. Here, we show that the lymph vessel growth factor Vegf-c is up-regulated in Bacillus Calmette-Guerin- and Mycobacterium tuberculosis-induced granulomas, and that infection results in lymph vessel sprouting and increased lymphatic area in granulomatous tissue. The observed lymphangiogenesis during infection was reduced by inhibition of vascular endothelial growth factor receptor 3. By using a model of chronic granulomatous infection, we also show that lymphatic remodeling of tissue persists despite resolution of acute infection and a 10- to 100-fold reduction in the number of bacteria and tissue-infiltrating leukocytes. Inhibition of vascular endothelial growth factor receptor 3 decreased the growth of new vessels, but also reduced the proliferation of antigen-specific T cells. Together, our data show that granuloma-up-regulated factors increase granuloma access to secondary lymph organs by lymphangiogenesis, and that this process facilitates the generation of systemic T-cell responses to granuloma-contained antigens.


Assuntos
Granuloma/imunologia , Imunidade Celular , Linfangiogênese/imunologia , Mycobacterium bovis/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia , Animais , Granuloma/microbiologia , Granuloma/patologia , Granuloma/veterinária , Camundongos , Linfócitos T/patologia , Tuberculose/patologia , Tuberculose/veterinária
15.
Front Immunol ; 14: 1233908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662908

RESUMO

In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Animais , Humanos , Sistema Linfático , Movimento Celular , Encéfalo
16.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693558

RESUMO

Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract: Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.

17.
Adv Exp Med Biol ; 946: 309-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21948376

RESUMO

Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.


Assuntos
Sistema Nervoso Central/imunologia , Células Dendríticas/imunologia , Encefalite/imunologia , Imunidade Inata/imunologia , Mielite/imunologia , Animais , Humanos , Receptor Cross-Talk/imunologia
18.
Transl Res ; 250: 18-35, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35811019

RESUMO

Bacteria, fungi, viruses, and protozoa are known to infect and induce diseases in the human central nervous system (CNS). Modeling the mechanisms of interaction between pathogens and the CNS microenvironment is essential to understand their pathophysiology and develop new treatments. Recent advancements in stem cell technologies have allowed for the creation of human brain organoids, which more closely resembles the human CNS microenvironment when compared to classical 2-dimensional (2D) cultures. Now researchers can utilize these systems to investigate and reinvestigate questions related to CNS infection in a human-derived brain organoid system. Here in this review, we highlight several infectious diseases which have been tested in human brain organoids and compare similarities in response to these pathogens across different investigations. We also provide a brief overview of some recent advancements which can further enrich this model to develop new and better therapies to treat brain infections.


Assuntos
Doenças Transmissíveis , Vírus , Humanos , Organoides , Encéfalo , Sistema Nervoso Central
19.
Proc Natl Acad Sci U S A ; 105(35): 13015-20, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18728195

RESUMO

The semaphorin and plexin family of ligand and receptor proteins provides important axon guidance cues required for development. Recent studies have expanded the role of semaphorins and plexins in the regulation of cardiac, circulatory and immune system function. Within the immune system, semaphorins and plexins regulate cell-cell interactions through a complex network of receptor and ligand pairs. Immune cells at different stages of development often express multiple semaphorins and plexins, leading to multivariate interactions, involving more than one ligand and receptor within each functional group. Because of this complexity, the significance of semaphorin and plexin regulation on individual immune cell types has yet to be fully appreciated. In this work, we examined the regulation of T cells by semaphorin 6D. Both in vitro and in vivo T cell stimulation enhanced semaphorin 6D expression. However, semaphorin 6D was only expressed by a majority of T cells during the late phases of activation. Consequently, the targeted disruption of semaphorin 6D receptor-ligand interactions inhibited T cell proliferation at late but not early phases of activation. This proliferation defect was associated with reduced linker of activated T cells protein phosphorylation, which may reflect semaphorin 6D regulation of c-Abl kinase activity. Semaphorin 6D disruption also inhibited expression of CD127, which is required during the multiphase antigen-presenting cell and T cell interactions leading to selection of long-lived lymphocytes. This work reveals a role for semaphorin 6D as a regulator of the late phase of primary immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunidade/imunologia , Semaforinas/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Proliferação de Células , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Semaforinas/antagonistas & inibidores , Transdução de Sinais
20.
Front Cell Neurosci ; 15: 683676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248503

RESUMO

The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA