RESUMO
Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I â KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.
Assuntos
Neoplasias da Mama , Epigênese Genética , Histona Desmetilases , Interferon Tipo I , Antraciclinas/metabolismo , Antraciclinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Histona Desmetilases/metabolismo , Humanos , Interferon Tipo I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologiaRESUMO
INTRODUCTION: Melanoma is the most aggressive skin cancer, with an increasing occurrence. Despite the recent important improvements due to novel immunotherapy approaches, when late diagnosed, melanoma prognosis is poor due to the metastatic progression and drug-resistance onset. Therefore, there is an urgent need to identify additional therapeutic targets. Melanoma invasive behavior is related to the activity of metalloproteases, able to degrade extracellular matrix leading to tumor dissemination. A recent study suggested that the most potent proteases inhibitor alpha-2-macroglobulin (A2MG) from plasma of hibernating fishes exerts potent antiproliferative effects. Our previous studies showed a significant reduction of A2MG in sera from mice/human melanoma models. METHODS: Gene and protein expression studies have been performed by using platforms and databases available online containing expression data from thousands of patients and healthy controls. RESULTS: We carried out an extensive bioinformatics analysis to evaluate the A2MG gene/protein expression on a large cohort of patients affected by many different cancer types, compared to healthy control subjects, and we found a highly significant difference of A2MG expression in 20 out of 31 cancer types (including melanoma) compared to healthy controls. Similar results were also confirmed at the proteomic level using another platform available online. Further, we found that higher A2MG expression is significantly related to overall survival in different cancers including melanoma. CONCLUSION: Our results strongly suggest A2MG as a novel molecular target in melanoma therapy, as well as in other cancer types.
Assuntos
Antineoplásicos , Melanoma , Animais , Feminino , Humanos , Camundongos , alfa-Macroglobulinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologiaRESUMO
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Assuntos
Melanoma , Neoplasias Cutâneas , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Agentes de Imunomodulação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , PlantasRESUMO
BACKGROUND: Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS: Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS: The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS: Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.
Assuntos
Di-Hidrolipoamida Desidrogenase , Melanoma , Humanos , Vemurafenib/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteômica , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Melanoma/tratamento farmacológico , Melanoma/metabolismoRESUMO
BACKGROUND: Several immune mechanisms activate in COVID-19 pathogenesis. Usually, coronavirus infection is characterized by dysregulated host immune responses, interleukine-6 increase, hyper-activation of cytotoxic CD8 T lymphocytes. Interestingly, Vitamin D deficiency has been often associated with altered immune responses and infections. In the present study, we evaluated Vitamin D plasma levels in patients affected with different lung involvement during COVID-19 infection. METHODS: Lymphocyte phenotypes were assessed by flow cytometry. Thoracic CT scan involvement was obtained by an image analysis program. RESULTS: Vitamin D levels were deficient in (80%) of patients, insufficient in (6.5%) and normal in (13.5%). Patients with very low Vitamin D plasma levels had more elevated D-Dimer values, a more elevated B lymphocyte cell count, a reduction of CD8 + T lymphocytes with a low CD4/CD8 ratio, more compromised clinical findings (measured by LIPI and SOFA scores) and thoracic CT scan involvement. CONCLUSIONS: Vitamin D deficiency is associated with compromised inflammatory responses and higher pulmonary involvement in COVID-19 affected patients. Vitamin D assessment, during COVID-19 infection, could be a useful analysis for possible therapeutic interventions. TRIAL REGISTRATION: 'retrospectively registered'.
Assuntos
COVID-19/sangue , COVID-19/epidemiologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia , Vitamina D/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/metabolismo , COVID-19/diagnóstico por imagem , Feminino , Humanos , Itália/epidemiologia , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Prognóstico , Deficiência de Vitamina D/diagnóstico por imagemRESUMO
The beneficial effects of coffee on human diseases are well documented, but the molecular mechanisms of its bioactive compounds on cancer are not completely elucidated. This is likely due to the large heterogeneity of coffee preparations and different coffee-based beverages, but also to the choice of experimental models where proliferation, differentiation and immune responses are differently affected. The aim of the present study was to investigate the effects of one of the most interesting bioactive compounds in coffee, i.e., caffeine, using a cellular model of melanoma at a defined differentiation level. A preliminary in silico analysis carried out on public gene-expression databases identified genes potentially involved in caffeine's effects and suggested some specific molecular targets, including tyrosinase. Proliferation was investigated in vitro on human melanoma initiating cells (MICs) and cytokine expression was measured in conditioned media. Tyrosinase was revealed as a key player in caffeine's mechanisms of action, suggesting a crucial role in immunomodulation through the reduction in IL-1ß, IP-10, MIP-1α, MIP-1ß and RANTES secretion onto MICs conditioned media. The potent antiproliferative effects of caffeine on MICs are likely to occur by promoting melanin production and reducing inflammatory signals' secretion. These data suggest tyrosinase as a key player mediating the effects of caffeine on melanoma.
Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Simulação por Computador/estatística & dados numéricos , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologiaRESUMO
BACKGROUND: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. METHODS: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). RESULTS: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). CONCLUSIONS: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Proteínas da Matriz Extracelular/sangue , Adulto , Idoso , Biópsia , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/sangue , Carcinoma Ductal de Mama/sangue , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Estudos de Coortes , Proteínas da Matriz Extracelular/química , Feminino , Humanos , Masculino , Mamografia , Pessoa de Meia-Idade , Nanopartículas/química , Proteômica/métodosRESUMO
OBJECTIVE: Gray matter (GM) damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis (MS), but can these changes be identified in the patient early in the disease course? METHODS: To identify possible biomarkers linking meningeal inflammation, GM damage, and disease severity, gene and protein expression were analyzed in meninges and cerebrospinal fluid (CSF) from 27 postmortem secondary progressive MS and 14 control cases. Combined cytokine/chemokine CSF profiling and 3T magnetic resonance imaging (MRI) were performed at diagnosis in 2 independent cohorts of MS patients (35 and 38 subjects) and in 26 non-MS patients. RESULTS: Increased expression of proinflammatory cytokines (IFNγ, TNF, IL2, and IL22) and molecules related to sustained B-cell activity and lymphoid-neogenesis (CXCL13, CXCL10, LTα, IL6, and IL10) was detected in the meninges and CSF of postmortem MS cases with high levels of meningeal inflammation and GM demyelination. Similar proinflammatory patterns, including increased levels of CXCL13, TNF, IFNγ, CXCL12, IL6, IL8, and IL10, together with high levels of BAFF, APRIL, LIGHT, TWEAK, sTNFR1, sCD163, MMP2, and pentraxin III, were detected in the CSF of MS patients with higher levels of GM damage at diagnosis. INTERPRETATION: A common pattern of intrathecal (meninges and CSF) inflammatory profile strongly correlates with increased cortical pathology, both at the time of diagnosis and at death. These results suggest a role for detailed CSF analysis combined with MRI as a prognostic marker for more aggressive MS. Ann Neurol 2018 Ann Neurol 2018;83:739-755.
Assuntos
Córtex Cerebral/patologia , Citocinas/líquido cefalorraquidiano , Substância Cinzenta/patologia , Meninges/metabolismo , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Córtex Cerebral/diagnóstico por imagem , Estudos de Coortes , Progressão da Doença , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Meninges/diagnóstico por imagem , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico por imagem , Curva ROCAssuntos
Antibacterianos , Úlcera Cutânea , Tobramicina , Humanos , Tobramicina/administração & dosagem , Tobramicina/uso terapêutico , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Doença Crônica , Úlcera Cutânea/tratamento farmacológico , Administração Tópica , Masculino , Feminino , IdosoRESUMO
Meta-analytic data on the effect of coffee in prostate cancer risk are controversial. Caffeine as a bioactive compound of coffee has not yet been studied in deep in vitro. Our study aimed at evaluating in a population cohort the effect of Italian-style coffee consumption on prostate cancer risk and at investigating in vitro the potential antiproliferative and antimetastatic activity of caffeine on prostate cancer cell lines. 6,989 men of the Moli-sani cohort aged ≥50 years were followed for a mean of 4.24 ± 1.35 years and 100 new prostate cancer cases were identified. The European Prospective Investigation into Cancer and Nutrition-Food Frequency Questionnaire was used for the dietary assessment and the evaluation of Italian-style coffee consumption. Two human prostate cancer cell lines, PC-3 and DU145, were tested with increasing concentrations of caffeine, and their proliferative/metastatic features were evaluated. The newly diagnosed prostate cancer participants presented lower coffee consumption (60.1 ± 51.3 g/day) compared to the disease-free population (74.0 ± 51.7 g/day) (p < 0.05). Multiadjusted analysis showed that the subjects at highest consumption (>3 cups/day) had 53% lower prostate cancer risk as compared to participants at the lowest consumption (0-2 cups/day) (p = 0.02). Both human prostate cancer cell lines treated with caffeine showed a significant reduction in their proliferative and metastatic behaviors (p < 0.05). In conclusion, reduction by Italian-style coffee consumption of prostate cancer risk (>3 cups/day) was observed in epidemiological level. Caffeine appeared to exert both antiproliferative and antimetastatic activity on two prostate cancer cell lines, thus providing a cellular confirmation for the cohort study results.
Assuntos
Cafeína/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Café , Neoplasias da Próstata/epidemiologia , Idoso , Linhagem Celular Tumoral , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Fatores de Risco , CháRESUMO
BACKGROUND: Although IgG oligoclonal bands (OCBs) in the cerebrospinal fluid (CSF) are a frequent phenomenon in multiple sclerosis (MS) patients, their relationship with grey matter lesions, intrathecal/meningeal inflammation and clinical evolution has not been clarified yet. The aim of our study was to assess the relationship between the OCBs, the inflammatory/neurodegenerative CSF profile at diagnosis, the cortical lesion load and the clinical evolution after 10 years. METHODS: This is a 10-year observational, cross-sectional study based on a combined MRI, cognitive and CSF profiling of the examined patients. Forty consecutive OCB-negative (OCB-) and 50 OCB-positive (OCB+) MS patients were included in this study. Both groups had mean disease duration of 10 years and were age and gender matched. Each patient underwent neurological and neuropsychological evaluation and 3-T MRI. Analysis of the presence and levels of 28 inflammatory mediators was performed in the CSF obtained from 10 OCB- MS, 11 OCB+ MS and 10 patients with other neurological conditions. RESULTS: Increased number of CLs was found in OCB+ compared to OCB- patients (p < 0.0001), whereas no difference was found in white matter lesion (WML) load (p = 0.36). The occurrence of OCB was also associated with increased levels of neurofilament light chains and of several inflammatory mediators linked to B lymphocyte activity and lymphoid-neogenesis (CXCL13, CXCL12, CXCL10, TNFSF13, TNFSF13B, IL6, IL10) and other pro-inflammatory molecules, such as IFN-γ, TNF, MMP2, GM-CSF, osteopontin and sCD163. Finally, the occurrence of OCB was found associated with poor prognosis, from both physical and cognitive points of view. CONCLUSIONS: OCB at MS onset are associated with more severe GM pathology and with a more severe physical disability and cognitive impairment after 10 years. Increased levels of cytokines linked to B cell activation, lymphoid-neogenesis, and pro-inflammatory immune response in the CSF of OCB+ patients support the hypothesis of crucial role played by compartmentalized, intrathecal B cell response in the pathogenesis of CLs and OCB production.
Assuntos
Citocinas/líquido cefalorraquidiano , Inflamação/etiologia , Esclerose Múltipla , Bandas Oligoclonais/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Linfócitos B/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Transtornos Cognitivos/etiologia , Estudos Transversais , Citocinas/genética , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/diagnóstico por imagem , Estudos Longitudinais , Masculino , Metaloproteinase 2 da Matriz/líquido cefalorraquidiano , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Osteopontina/líquido cefalorraquidiano , Adulto JovemRESUMO
Migration is a key cellular function with important implications in cell physiology. Impairment of such function is observed in angiogenesis, cancer, central nervous system development, and many other physiological and pathological events. Serum is considered among the most potent physiological chemotactic stimuli. Transglutaminase 2 (TG2) is involved in most of the mentioned processes, suggesting the hypothesis that TG2 may modulate cell movement and chemotaxis by acting on serum factors. Cell biology and biochemistry studies confirmed this hypothesis, showing that human serum contains potent chemotactic signals significantly impaired by activated TG2. Bioinformatics studies indicated that one potent serum factor potential substrate of TG2-dependent transamidation is platelet-derived growth factor-BB (PDGF-BB). Cell biology and immunometric experiments carried out with U87MG human glioma cell line showed that human recombinant PDGF-BB pre-incubated with calcium-activated TG2 lost about 70 % of its chemotactic activity and antigenicity. These data indicate that PDGF-BB is a substrate of TG2-transamidating activity, and such modification may play a key role in the modulation of PDGF's chemotactic features. Further, these findings suggest a novel point of view to study the extracellular functions of TG2 and to understand how protein signals, such as growth factors and cytokines, act in the extracellular space to reach their specific targets.
Assuntos
Proteínas de Ligação ao GTP/metabolismo , Neuroglia/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-sis/metabolismo , Transglutaminases/metabolismo , Becaplermina , Cálcio/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Ligação ao GTP/agonistas , Células Endoteliais da Veia Umbilical Humana , Humanos , Neuroglia/citologia , Neuroglia/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologiaRESUMO
Cancer stem cells (CSC) represent a key cellular subpopulation controlling biological features such as cancer progression in all cancer types. By using melanospheres established from human melanoma patients, we compared less differentiated melanosphere-derived CSC to differentiating melanosphere-derived cells. Increased lipid uptake was found in melanosphere-derived CSC vs. differentiating melanosphere-derived cells, paralleled by strong expression of lipogenic factors Sterol Regulatory Element-Binding Protein-1 (SREBP-1) and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ). An inverse relation between lipid-storing phenotype and autophagy was also found, since microtubule-associated protein 1A/1B-Light Chain 3 (LC3) lipidation is reduced in melanosphere-derived CSC. To investigate upstream autophagy regulators, Phospho-AMP activated Protein Kinase (P-AMPK) and Phospho-mammalian Target of Rapamycin (P-mTOR) were analyzed; lower P-AMPK and higher P-mTOR expression in melanosphere-derived CSC were found, thus explaining, at least in part, their lower autophagic activity. In addition, co-localization of LC3-stained autophagosome spots and perilipin-stained lipid droplets was demonstrated mainly in differentiating melanosphere-derived cells, further supporting the role of autophagy in lipid droplets clearance. The present manuscript demonstrates an inverse relationship between lipid-storing phenotype and melanoma stem cells differentiation, providing novel indications involving autophagy in melanoma stem cells biology.
Assuntos
Autofagia , Metabolismo dos Lipídeos , Melanoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Humanos , Melanoma/patologia , Células-Tronco Neoplásicas/patologia , PPAR gama/metabolismo , Fosforilação , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais CultivadasAssuntos
Pneumonia Viral , Vitamina D , Betacoronavirus , COVID-19 , Infecções por Coronavirus , Humanos , Pandemias , SARS-CoV-2RESUMO
BACKGROUND: Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable. OBJECTIVE: Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females. METHODS: We reviewed articles regarding the genetic and environmental etiology of autism and toxins effects on animal models selected from PubMed and databases about autism and toxicology. DISCUSSION: Our hypothesis proposes that in the first year of life, the decreasing of maternal immune protection and child immune-system immaturity create an immune vulnerability to infection diseases that, especially if treated with antibiotics, could facilitate dysbiosis and GI disorders. This condition triggers a vicious circle between immune system impairment and increasing dysbiosis that leads to leaky gut and neurochemical compounds and/or neurotoxic xenobiotics production and absorption. This alteration affects the 'gut-brain axis' communication that connects gut with central nervous system via immune system. Thus, metabolic pathways impaired in autistic children can be affected by genetic alterations or by environment-xenobiotics interference. In addition, in animal models many xenobiotics exert their neurotoxicity in a sex-dependent manner. CONCLUSIONS: We integrate fragmented and multi-disciplinary information in a unique hypothesis and first disclose a possible environmental origin for the imbalance of male:female distribution of autism, reinforcing the idea that exogenous factors are related to the recent rise of this disease.
Assuntos
Transtorno Autístico/etiologia , Encéfalo/crescimento & desenvolvimento , Disbiose/imunologia , Meio Ambiente , Intestinos/patologia , Xenobióticos/toxicidade , Animais , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Transtorno Autístico/imunologia , Transtorno Autístico/patologia , Encéfalo/patologia , Criança , Pré-Escolar , Disbiose/induzido quimicamente , Feminino , Humanos , Lactente , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Masculino , Fatores de Risco , Fatores SexuaisRESUMO
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Assuntos
Proteínas de Ligação ao GTP , Neoplasias do Sistema Nervoso , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Humanos , Proteínas de Ligação ao GTP/metabolismo , Neoplasias do Sistema Nervoso/patologia , Neoplasias do Sistema Nervoso/enzimologia , Neoplasias do Sistema Nervoso/metabolismo , Transglutaminases/metabolismoRESUMO
The immunization of mice with the sterile culture medium supernatants of Mycobacterium tuberculosis (Mtb) H37Rv permitted the production of several monoclonal antibodies (mAbs) specific for secreted and/or released antigens. Two mAbs bound and immunoprecipitated an 80-kDa protein that was identified by mass spectrometry as Rv1133c, the methionine synthase MetE. The protein MetE is ubiquitous among prokaryota and shows a significant sequence homology in many bacteria. We produced both the full-length recombinant MetE and its N-terminal fragment, whose sequence is more conserved among mycobacteria, to select mAbs recognizing an Mtb-specific region of MetE. Finally, we produced and selected eight mAbs that specifically detect the MetE protein in the supernatant and cell lysate of Mtb and BCG, but not other bacteria such as non-tuberculous mycobacteria (NTM), Streptococcus pneumoniae, Staphylococcus aureus, Acinetobacter baumanii, or Escherichia coli. Taking advantage of our mAbs, we studied (i) the vitamin B12 dependence for the synthesis of MetE in Mtb and NTM and (ii) the kinetics of MetE production and secretion in supernatants during the in vitro reproduced replicative, dormant, and resuscitation cycle of Mtb. Our data demonstrate that dormant Mtb, which are assumed to be prevalent in latent infections, as well as NTM do not produce and secrete MetE. Results indicate an unexpected specificity for Mtb of our anti-MetE mAbs and encourage the use of rMetE and our mAbs as tools for the immunodiagnosis of TB and its stages.
Assuntos
Anticorpos Monoclonais , Antígenos de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/imunologia , Antígenos de Bactérias/imunologia , Animais , Camundongos , Anticorpos Monoclonais/imunologia , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia , Humanos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Testes Imunológicos/métodos , Biomarcadores , Anticorpos Antibacterianos/imunologia , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS: Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS: CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION: Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Assuntos
Biomarcadores Tumorais , Interleucina-8 , Melanoma , Osteopontina , Humanos , Osteopontina/sangue , Interleucina-8/sangue , Masculino , Feminino , Melanoma/tratamento farmacológico , Melanoma/sangue , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Idoso , Adulto , Terapia de Alvo Molecular , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
In chronic disorders related to endothelial cell dysfunction, plasma ß2 glycoprotein I (ß2GPI) plays a role as a target antigen of pathogenetic autoimmune responses. However, information is still lacking to clarify why ß2GPI triggers autoimmunity. It is possible that posttranslational modification of the protein, such as nonenzymatic glycosylation, leads to the formation of advanced glycation end products (AGEs). The aim of our study was to explore whether glucose-modified ß2GPI is able to interact and activate monocyte-derived immature dendritic cells (iDCs) from healthy human donors. SDS-PAGE and spectrofluorometric analyses indicated that ß2GPI incubated with glucose was sugar modified, and that this modification likely consisted of AGE formation, resulting in AGE-ß2GPI. AGE-ß2GPI caused phenotypical and functional maturation of iDCs involving the activation of p38 MAPK, ERK, and NF-κB. It also induced on DCs a significant up-regulation of RAGE, the receptor for AGEs. Evidence for RAGE involvement comes from blocking experiments with an anti-RAGE mAb, confocal analysis, and coimmunoprecipitation experiments. AGE-ß2GPI-stimulated DCs had increased allostimulatory ability and primed naive T lymphocytes toward a Th2 polarization. These findings might explain in part the interactive role of ß2GPI, AGEs, and DCs in chronic disorders related to endothelial cell dysfunction.