Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816213

RESUMO

In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.


Assuntos
Dinaminas , Mitocôndrias , Dinâmica Mitocondrial , Anticorpos de Domínio Único , Dinaminas/metabolismo , Humanos , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/imunologia , Mitocôndrias/metabolismo , Proteômica/métodos , Animais , Ligação Proteica , Células HeLa , Proteínas Mitocondriais/metabolismo
2.
Methods Mol Biol ; 2446: 555-579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157294

RESUMO

Single-domain antibodies such as nanobodies (Nbs) have substantially expanded the possibilities of advanced cellular imaging. In comparison to conventional antibodies, Nbs are characterized by small size, high stability, and solubility in many environments, including the cytoplasm. Nbs can be efficiently functionalized or modified according to the needs of the imaging approach. Target-specific Nbs can be easily converted into genetically encoded fluorescently labeled intrabodies, also known as chromobodies (CBs), which represent powerful tools to study the dynamics of different proteins of interest within living cells. In this context, CBs specific for a short peptide epitope provide a versatile alternative to bypass the limitations observed with larger fluorescent protein fusions and can be readily used to visualize and monitor peptide-tagged proteins for which specific Nbs are not available. Here, we present our novel detection system comprising a 15 amino acid peptide-tag (PepTag) in combination with a peptide-tag specific CB (PepCB). We provide protocols for adding the PepTag to different proteins of interest, reformatting the peptide-specific Nb (PepNb) into a CB for expression in mammalian cells, and establishment of stable cell lines expressing the PepCB for protein interaction assays and compound screenings.


Assuntos
Anticorpos de Domínio Único , Animais , Anticorpos/metabolismo , Citoplasma/metabolismo , Epitopos/metabolismo , Peptídeos/metabolismo , Anticorpos de Domínio Único/química
3.
Front Mol Biosci ; 9: 835302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359597

RESUMO

The mitochondrial outer membrane (MOM)-anchored GTPase Miro1, is a central player in mitochondrial transport and homeostasis. The dysregulation of Miro1 in amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) suggests that Miro1 may be a potential biomarker or drug target in neuronal disorders. However, the molecular functionality of Miro1 under (patho-) physiological conditions is poorly known. For a more comprehensive understanding of the molecular functions of Miro1, we have developed Miro1-specific nanobodies (Nbs) as novel research tools. We identified seven Nbs that bind either the N- or C-terminal GTPase domain of Miro1 and demonstrate their application as research tools for proteomic and imaging approaches. To visualize the dynamics of Miro1 in real time, we selected intracellularly functional Nbs, which we reformatted into chromobodies (Cbs) for time-lapse imaging of Miro1. By genetic fusion to an Fbox domain, these Nbs were further converted into Miro1-specific degrons and applied for targeted degradation of Miro1 in live cells. In summary, this study presents a collection of novel Nbs that serve as a toolkit for advanced biochemical and intracellular studies and modulations of Miro1, thereby contributing to the understanding of the functional role of Miro1 in disease-derived model systems.

4.
Sci Rep ; 10(1): 14267, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868807

RESUMO

Epitope tagging is a versatile approach to study different proteins using a well-defined and established methodology. To date, most epitope tags such as myc, HA, V5 and FLAG tags are recognized by antibodies, which limits their use to fixed cells, tissues or protein samples. Here we introduce a broadly applicable tagging strategy utilizing a short peptide tag (PepTag) which is specifically recognized by a nanobody (PepNB). We demonstrated that the PepNB can be easily functionalized for immunoprecipitation or direct immunofluorescence staining of Pep-tagged proteins in vitro. For in cellulo studies we converted the PepNB into a fluorescently labeled Pep-chromobody (PepCB) which is functionally expressed in living cells. The addition of the small PepTag does not interfere with the examined structures in different cellular compartments and its detection with the PepCB enables optical antigen tracing in real time. By employing the phenomenon of antigen-mediated chromobody stabilization (AMCBS) using a turnover-accelerated PepCB we demonstrated that the system is suitable to visualize and quantify changes in Pep-tagged antigen concentration by quantitative live-cell imaging. We expect that this novel tagging strategy offers new opportunities to study the dynamic regulation of proteins, e.g. during cellular signaling, cell differentiation, or upon drug action.


Assuntos
Antígenos/imunologia , Epitopos/imunologia , Peptídeos/imunologia , Western Blotting , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Células/imunologia , Células/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Edição de Genes , Células HEK293 , Humanos , Imunoprecipitação , Microscopia Confocal , Proteínas Recombinantes , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA