Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 33(14): 3031-3040.e6, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37379844

RESUMO

Centrosomes are multi-protein organelles that function as microtubule (MT) organizing centers (MTOCs), ensuring spindle formation and chromosome segregation during cell division.1,2,3 Centrosome structure includes core centrioles that recruit pericentriolar material (PCM) that anchors γ-tubulin to nucleate MTs.1,2 In Drosophila melanogaster, PCM organization depends on proper regulation of proteins like Spd-2, which dynamically localizes to centrosomes and is required for PCM, γ-tubulin, and MTOC activity in brain neuroblast (NB) mitosis and male spermatocyte (SC) meiosis.4,5,6,7,8 Some cells have distinct requirements for MTOC activity due to differences in characteristics like cell size9,10 or whether they are mitotic or meiotic.11,12 How centrosome proteins achieve cell-type-specific functional differences is poorly understood. Previous work identified alternative splicing13 and binding partners14 as contributors to cell-type-specific differences in centrosome function. Gene duplication, which can generate paralogs with specialized functions,15,16 is also implicated in centrosome gene evolution,17 including cell-type-specific centrosome genes.18,19 To gain insight into cell-type-specific differences in centrosome protein function and regulation, we investigated a duplication of Spd-2 in Drosophila willistoni, which has Spd-2A (ancestral) and Spd-2B (derived). We find that Spd-2A functions in NB mitosis, whereas Spd-2B functions in SC meiosis. Ectopically expressed Spd-2B accumulates and functions in mitotic NBs, but ectopically expressed Spd-2A failed to accumulate in meiotic SCs, suggesting cell-type-specific differences in translation or protein stability. We mapped this failure to accumulate and function in meiosis to the C-terminal tail domain of Spd-2A, revealing a novel regulatory mechanism that can potentially achieve differences in PCM function across cell types.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Drosophila , Drosophila , Duplicação Gênica , Tubulina (Proteína) , Animais , Masculino , Centríolos/genética , Centríolos/metabolismo , Centrossomo/metabolismo , Drosophila/genética , Drosophila/metabolismo , Meiose , Mitose , Tubulina (Proteína)/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética
2.
Mol Biol Cell ; 34(9): br15, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342879

RESUMO

Centrosomes are essential parts of diverse cellular processes, and precise regulation of the levels of their constituent proteins is critical for their function. One such protein is Pericentrin (PCNT) in humans and Pericentrin-like protein (PLP) in Drosophila. Increased PCNT expression and its protein accumulation are linked to clinical conditions including cancer, mental disorders, and ciliopathies. However, the mechanisms by which PCNT levels are regulated remain underexplored. Our previous study demonstrated that PLP levels are sharply down-regulated during early spermatogenesis and this regulation is essential to spatially position PLP on the proximal end of centrioles. We hypothesized that the sharp drop in PLP protein was a result of rapid protein degradation during the male germ line premeiotic G2 phase. Here, we show that PLP is subject to ubiquitin-mediated degradation and identify multiple proteins that promote the reduction of PLP levels in spermatocytes, including the UBR box containing E3 ligase Poe (UBR4), which we show binds to PLP. Although protein sequences governing posttranslational regulation of PLP are not restricted to a single region of the protein, we identify a region that is required for Poe-mediated degradation. Experimentally stabilizing PLP, via internal PLP deletions or loss of Poe, leads to PLP accumulation in spermatocytes, its mispositioning along centrioles, and defects in centriole docking in spermatids.


Assuntos
Centríolos , Ubiquitina-Proteína Ligases , Masculino , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Antígenos/metabolismo
3.
Curr Biol ; 33(19): 4202-4216.e9, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729913

RESUMO

Proper centrosome number and function relies on the accurate assembly of centrioles, barrel-shaped structures that form the core duplicating elements of the organelle. The growth of centrioles is regulated in a cell cycle-dependent manner; while new daughter centrioles elongate during the S/G2/M phase, mature mother centrioles maintain their length throughout the cell cycle. Centriole length is controlled by the synchronized growth of the microtubules that ensheathe the centriole barrel. Although proteins exist that target the growing distal tips of centrioles, such as CP110 and Cep97, these proteins are generally thought to suppress centriolar microtubule growth, suggesting that distal tips may also contain unidentified counteracting factors that facilitate microtubule polymerization. Currently, a mechanistic understanding of how distal tip proteins balance microtubule growth and shrinkage to either promote daughter centriole elongation or maintain centriole length is lacking. Using a proximity-labeling screen in Drosophila cells, we identified Cep104 as a novel component of a group of evolutionarily conserved proteins that we collectively refer to as the distal tip complex (DTC). We found that Cep104 regulates centriole growth and promotes centriole elongation through its microtubule-binding TOG domain. Furthermore, analysis of Cep104 null flies revealed that Cep104 and Cep97 cooperate during spermiogenesis to align spermatids and coordinate individualization. Lastly, we mapped the complete DTC interactome and showed that Cep97 is the central scaffolding unit required to recruit DTC components to the distal tip of centrioles.


Assuntos
Centríolos , Proteínas Associadas aos Microtúbulos , Masculino , Animais , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Drosophila/metabolismo , Centrossomo/metabolismo , Espermatogênese , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929834

RESUMO

Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs. Here, we demonstrate that during interphase, inactive centrioles move directly along the interphase MT network as Kinesin-1 cargo. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. In vitro assays show that PLP directly interacts with the cargo binding domain of Kinesin-1, allowing PLP to migrate on MTs. Binding assays using purified proteins revealed that relief of Kinesin-1 autoinhibition is critical for its interaction with PLP. Finally, our studies of neural stem cell asymmetric divisions in the Drosophila brain show that the PLP-Kinesin-1 interaction is essential for the timely separation of centrioles, the asymmetry of centrosome activity, and the age-dependent centrosome inheritance.


Assuntos
Antígenos , Centríolos , Cinesinas , Animais , Antígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Células-Tronco Neurais , Transporte Proteico
5.
Dev Cell ; 53(1): 86-101.e7, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32169161

RESUMO

The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Microtúbulos/metabolismo , Cabeça do Espermatozoide/metabolismo , Cauda do Espermatozoide/metabolismo , Animais , Corpos Basais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Masculino
6.
J Cell Biol ; 219(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31841145

RESUMO

During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2-G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/genética , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Ciclo Celular/genética , Linhagem Celular , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/genética , Fosforilação/genética , Ligação Proteica/genética
7.
Mol Biol Cell ; 30(8): 992-1007, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726162

RESUMO

Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Anáfase/fisiologia , Animais , Divisão Celular/fisiologia , Centrossomo/metabolismo , Citocinese , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Miosinas/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Fuso Acromático/metabolismo
8.
PLoS One ; 13(1): e0190530, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29315319

RESUMO

The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Sítios de Ligação , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Proteínas de Homeodomínio/fisiologia , Ressonância Magnética Nuclear Biomolecular , Reação em Cadeia da Polimerase , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
9.
J Cell Biol ; 213(4): 435-50, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27185836

RESUMO

Centrioles are the foundation of two organelles, centrosomes and cilia. Centriole numbers and functions are tightly controlled, and mutations in centriole proteins are linked to a variety of diseases, including microcephaly. Loss of the centriole protein Asterless (Asl), the Drosophila melanogaster orthologue of Cep152, prevents centriole duplication, which has limited the study of its nonduplication functions. Here, we identify populations of cells with Asl-free centrioles in developing Drosophila tissues, allowing us to assess its duplication-independent function. We show a role for Asl in controlling centriole length in germline and somatic tissue, functioning via the centriole protein Cep97. We also find that Asl is not essential for pericentriolar material recruitment or centrosome function in organizing mitotic spindles. Lastly, we show that Asl is required for proper basal body function and spermatid axoneme formation. Insights into the role of Asl/Cep152 beyond centriole duplication could help shed light on how Cep152 mutations lead to the development of microcephaly.


Assuntos
Centríolos/metabolismo , Centríolos/fisiologia , Proteínas de Drosophila/metabolismo , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Animais , Axonema/metabolismo , Axonema/fisiologia , Corpos Basais/metabolismo , Corpos Basais/fisiologia , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Masculino , Mitose/fisiologia , Espermatozoides/fisiologia
10.
Nat Commun ; 7: 12476, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558293

RESUMO

The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein-protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a 'domain-level' centrosome interactome using direct protein-protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes.


Assuntos
Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Duplicação Gênica , Organelas/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato
11.
J Cell Biol ; 211(5): 987-98, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26620907

RESUMO

The interaction between centrosomes and mitotic spindle poles is important for efficient spindle formation, orientation, and cell polarity. However, our understanding of the dynamics of this relationship and implications for tissue homeostasis remains poorly understood. Here we report that Drosophila melanogaster calmodulin (CaM) regulates the ability of the microcephaly-associated protein, abnormal spindle (Asp), to cross-link spindle microtubules. Both proteins colocalize on spindles and move toward spindle poles, suggesting that they form a complex. Our binding and structure-function analysis support this hypothesis. Disruption of the Asp-CaM interaction alone leads to unfocused spindle poles and centrosome detachment. This behavior leads to randomly inherited centrosomes after neuroblast division. We further show that spindle polarity is maintained in neuroblasts despite centrosome detachment, with the poles remaining stably associated with the cell cortex. Finally, we provide evidence that CaM is required for Asp's spindle function; however, it is completely dispensable for Asp's role in microcephaly suppression.


Assuntos
Calmodulina/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Animais , Encéfalo/patologia , Divisão Celular , Linhagem Celular , Polaridade Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Drosophila melanogaster/metabolismo , Éxons , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/metabolismo , Mutação , Fenótipo , Ligação Proteica , Interferência de RNA , Fuso Acromático/metabolismo
12.
J Cell Biol ; 210(1): 79-97, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26150390

RESUMO

Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle-dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.


Assuntos
Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Interfase , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina , Segregação de Cromossomos , Drosophila melanogaster , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Instabilidade Genômica , Microtúbulos/metabolismo , Mitose , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
13.
Mol Biol Cell ; 25(18): 2682-94, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031429

RESUMO

Pericentrin is a critical centrosomal protein required for organizing pericentriolar material (PCM) in mitosis. Mutations in pericentrin cause the human genetic disorder Majewski/microcephalic osteodysplastic primordial dwarfism type II, making a detailed understanding of its regulation extremely important. Germaine to pericentrin's function in organizing PCM is its ability to localize to the centrosome through the conserved C-terminal PACT domain. Here we use Drosophila pericentrin-like-protein (PLP) to understand how the PACT domain is regulated. We show that the interaction of PLP with calmodulin (CaM) at two highly conserved CaM-binding sites in the PACT domain controls the proper targeting of PLP to the centrosome. Disrupting the PLP-CaM interaction with single point mutations renders PLP inefficient in localizing to centrioles in cultured S2 cells and Drosophila neuroblasts. Although levels of PCM are unaffected, it is highly disorganized. We also demonstrate that basal body formation in the male testes and the production of functional sperm does not rely on the PLP-CaM interaction, whereas production of functional mechanosensory neurons does.


Assuntos
Corpos Basais/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Espermatozoides/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina , Linhagem Celular , Centríolos/fisiologia , Drosophila melanogaster , Masculino , Mecanotransdução Celular , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Motilidade dos Espermatozoides , Espermatogênese
14.
J Cell Sci ; 118(Pt 18): 4113-22, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16118246

RESUMO

Mammalian cells develop a polarized morphology and migrate directionally into a wound in a monolayer culture. To understand how microtubules contribute to these processes, we used GFP-tubulin to measure dynamic instability and GFP-EB1, a protein that marks microtubule plus-ends, to measure microtubule growth events at the centrosome and cell periphery. Growth events at the centrosome, or nucleation, do not show directional bias, but are equivalent toward and away from the wound. Cells with two centrosomes nucleated approximately twice as many microtubules/minute as cells with one centrosome. The average number of growing microtubules per microm2 at the cell periphery is similar for leading and trailing edges and for cells containing one or two centrosomes. In contrast to microtubule growth, measurement of the parameters of microtubule dynamic instability demonstrate that microtubules in the trailing edge are more dynamic than those in the leading edge. Inhibition of Rho with C3 transferase had no detectable effect on microtubule dynamics in the leading edge, but stimulated microtubule turnover in the trailing edge. Our data demonstrate that in wound-edge cells, microtubule nucleation is non-polarized, in contrast to microtubule dynamic instability, which is highly polarized, and that factors in addition to Rho contribute to microtubule stabilization.


Assuntos
Microtúbulos/fisiologia , Cicatrização/fisiologia , Animais , Células CHO , Processos de Crescimento Celular/fisiologia , Polaridade Celular , Células Cultivadas , Centrossomo/fisiologia , Centrossomo/ultraestrutura , Cricetinae , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Transfecção , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA