Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443924

RESUMO

The association between rider-saddle interaction and horse kinematics has been little studied. It was hypothesized that differences in a thigh block design would influence (a) rider-saddle interface pressures, (b) rider kinematics, and (c) equine limb/spinal kinematics. Eighteen elite sport horses/riders were trotted using correctly fitted dressage saddles with thigh blocks S (vertical face) and F (deformable face). Contact area, mean, and peak pressure between rider and saddle were determined using an on-saddle pressure mat. Spherical markers allowed for the measurement of horse/rider kinematics using two-dimensional video analysis. The kinematics of the equine thoracolumbosacral spine were obtained using skin-mounted inertial measuring units. Results were compared between thigh blocks (paired t-test p ≤ 0.05). With F, the contact area, mean, and peak pressure between rider and saddle were significantly higher (p = 0.0001), and the rider trunk anterior tilt was reduced, indicating altered rider-saddle interaction. The horse thoracic axial rotation and flexion/extension were reduced (p = 0.01-0.03), caudal thoracic and lumbar lateral bend was increased (p = 0.02-0.04), and carpal flexion increased (p = 0.01-0.05) with F compared to S. During straight-line locomotion when in sitting trot, thigh block F was associated with altered rider-saddle interaction and rider and equine kinematics, leading to a more consistent rider-saddle interface, a more upright rider trunk during stance, an increased horse thoracic stability and lumbar lateral bend, and forelimb flexion, supporting the importance of optimising rider-saddle-horse interaction.

2.
Animals (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924326

RESUMO

Thermography is a non-invasive method for measuring surface temperatures and may be a convenient way of identifying hypo/hyperthermic areas under a saddle that may be related to saddle pressures. A thermal camera quantified minimum/maximum/mean temperatures at specific locations (left/right) of the thoracic region at three-time points: (1) baseline; (2) post lunging; (3) post ridden exercise in eight non-lame sports horses ridden by the same rider. A Pliance (Novel) pressure mat determined the mean/peak saddle pressures (kPa) in the cranial and caudal regions. General linear mixed models with the horse as the random factor investigated the time point (fixed factor: baseline; lunge; ridden) and saddle fit (fixed factor: correct; wide; narrow) on thermal parameters with Bonferroni post hoc comparison. The saddle pressure data (grouped: saddle width) were assessed with an ANOVA and Tukey post hoc comparison (p ≤ 0.05). Differences between the saddle widths in the cranial/caudal mean (p = 0.05) and peak saddle pressures (p = 0.01) were found. The maximum temperatures increased post lunge (p ≤ 0.0001) and post ridden (p ≤ 0.0001) compared to the baseline. No difference between post lunge and post ridden exercise (all p ≥ 0.51) was found. The thermal activity does not appear to be representative of increased saddle pressure values. The sole use of thermal imaging for saddle fitting should be applied with caution.

3.
J Equine Vet Sci ; 88: 102946, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303298

RESUMO

There is a paucity of evidence on the effect that rider asymmetry has on equine locomotion. The aim of this study was to evaluate the effect of rider asymmetry on equine locomotion by using a novel approach to induce rider asymmetry. Ten nonlame horses were recruited for this study. Joint center markers were used to capture 2D kinematics (Quintic Biomechanics) of the horse and rider and horses were equipped with seven inertial sensors positioned at the fifth (T5) and eighteenth (T18) thoracic vertebrae, third lumbar (L3) vertebra, tubera sacrale (TS), and left and right tubera coxae. Rider asymmetry was induced by shortening the ventral aspect of one stirrup by 5 cm. Kinematic data were compared between conditions using a mixed model with the horse defined as a random factor and stirrup condition (symmetrical stirrups and asymmetrical stirrups) and direction (inside and outside) defined as fixed factors. Data from riders where the right stirrup was shortened were mirrored to reflect a left stirrup being shortened. To determine differences between conditions, a significance of P ≤ .05 was set. On the rein with the shortened stirrup on the outside: an increase in lateral bending range of motion (ROM) at T5 (P = .003), L3 (P = .04), and TS (P = .02), an increase in mediolateral displacement at T5 (P = .04), T18 (P = .04), and L3 (0.03) were found. An increase in maximum fetlock extension was apparent for both the front (P = .01) and hind limb (P = .04) on the contralateral side to the shortened stirrup; for the asymmetrical stirrup condition on the rein with the shortened stirrup on the inside: an increase in flexion-extension ROM at T5 (P = .03) and L3 (P = .04), axial rotation at T5 (P = .05), and lateral bending of T5 (P = .03), L3 (P = .04), and TS (P = .02). Asymmetric rider position appears to have an effect on the kinematics of the thoracolumbar spine. These findings warrant further investigation to understand the long-term impact this may have on equine locomotor health.


Assuntos
Marcha , Locomoção , Animais , Fenômenos Biomecânicos , Cavalos , Amplitude de Movimento Articular , Vértebras Torácicas
4.
J Equine Vet Sci ; 81: 102795, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31668303

RESUMO

Back pain is frequently recognized in racehorses, but saddle fit and design are rarely assessed. In sport horses, relationships between horse-saddle interaction, back pain, and altered kinematics are established, but few studies investigating horse-saddle interaction in racehorses exist. We hypothesized that reducing pressures under saddles at thoracic (T) vertebrae 10-13 in galloping racehorses is associated with improved limb and lumbosacral kinematics. The objectives of the study were to (1) determine pressure magnitude/distribution under 3 frequently used race-exercise saddles and a saddle designed to reduce peak pressures at T10-13 on racehorses at gallop and (2) compare limb and lumbosacral kinematics at gallop between 4 saddle types. Four Thoroughbred racehorses were galloped overground at standardized speed wearing half-tree, three-quarter-tree, full-tree race-exercise saddles (saddles H/Q/T), and a saddle designed to reduce paraspinal pressure at T10-13 (saddle F), in a cross-over design. Pressure distribution under saddles was recorded using a pressure-mat system and gait features using high-speed motion capture. Results were compared between saddle types within horses. Maximum peak pressures at T10-13 occurred at trailing forelimb vertical, but pressure distribution varied significantly between saddle types. Peak pressures, femur angle to vertical, and hip-flexion angle were significantly different between saddle types (P ≤ .0001-.02). Saddle F had significantly lower peak pressures at T10-13, greater hip flexion, femur angle to vertical, and forelimb and hindlimb protraction than saddles H, Q, and T. These findings suggest the femur has greater protraction in saddles with lower pressures at T10-13, indicating the importance of race-exercise saddle design. Saddles with lower pressures at T10-13 could potentially allow increased range of spinal motion and altered muscle use, supporting improved hindlimb function.


Assuntos
Cavalos/fisiologia , Condicionamento Físico Animal , Animais , Fenômenos Biomecânicos , Estudos Cross-Over , Marcha , Pressão , Amplitude de Movimento Articular
5.
Animals (Basel) ; 9(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640213

RESUMO

This study evaluated the effect of saddle tree width on thoracolumbar and limb kinematics, saddle pressure distribution, and thoracolumbar epaxial musculature dimensions. Correctly fitted saddles were fitted by a Society of Master Saddler Qualified Saddle Fitter in fourteen sports horses (mean ± SD age 12 ± 8.77 years, height 1.65 ± 0.94 m), and were altered to one width fitting wider and narrower. Horses were equipped with skin markers, inertial measurement units, and a pressure mat beneath the saddle. Differences in saddle pressure distribution, as well as limb and thoracolumbosacral kinematics between saddle widths were investigated using a general linear model with Bonferroni adjusted alpha (p ≤ 0.05). Compared with the correct saddle width, in trot, in the wide saddle, an 8.5% increase in peak pressures was found in the cranial region of the saddle (p = 0.003), a 14% reduction in thoracolumbar dimensions at T13 (p = 0.02), and a 6% decrease in the T13 range of motion in the mediolateral direction (p = 0.02). In the narrow saddle, a 14% increase in peak pressures was found in the caudal region of the saddle (p = 0.01), an 8% decrease in the range of motion of T13 in the mediolateral direction (p = 0.004), and a 6% decrease in the vertical direction (p = 0.004) of T13. Compared with the correct saddle width, in canter, in the wide saddle, axial rotation decreased by 1% at T5 (p = 0.03) with an 5% increase at T13 (p = 0.04) and a 5% increase at L3 (p = 0.03). Peak pressures increased by 4% (p = 0.002) in the cranial region of the wide saddle. Altering the saddle fit had an effect on thoracolumbar kinematics and saddle pressure distribution; hence, correct saddle fit is essential to provide unhindered locomotion.

6.
Vet J ; 198(1): 92-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23973365

RESUMO

Girths are frequently blamed for veterinary and performance problems, but research into girth/horse interaction is sparse. The study objectives were (1) to determine location of peak pressure under a range of girths, and (2) to compare horse gait between the horse's standard girth and a girth designed to avoid detected peak pressure locations. In the first part of the study, and following validation procedures, a calibrated pressure mat placed under the girth of 10 horses was used to determine the location of peak pressures. A girth was designed to avoid peak pressure locations (Girth F). In the second part, 20 elite horses/riders with no lameness or performance problem were ridden in Girth F and their standard girth (Girth S) in a double blind crossover design. Pressure mat data were acquired from under the girths. High speed video was captured and forelimb and hindlimb protraction, maximal carpal and tarsal flexion during flight were determined in trot. In standard girths, peak pressures were located over the musculature behind the elbow. Pressure mat results revealed that the maximum forces with Girth S were 22% (left) and 14% (right) greater than Girth F, and peak pressures were 76% (left) and 98% (right) greater (P<0.01 for all). On gait evaluation, Girth F was associated with 6-11% greater forelimb protraction, 10-20% greater hindlimb protraction, 4% greater carpal flexion, and 3% greater tarsal flexion than Girth S (P<0.01 for all). Peak pressures were located where horses tend to develop pressure sores. Girth F reduced peak pressures under the girth, and improved limb protraction and carpal/ tarsal flexion, which may reflect improved posture and comfort.


Assuntos
Membro Anterior/fisiologia , Marcha , Membro Posterior/fisiologia , Cavalos/fisiologia , Condicionamento Físico Animal/métodos , Amplitude de Movimento Articular , Animais , Estudos Cross-Over , Método Duplo-Cego , Equipamentos e Provisões/veterinária , Feminino , Humanos , Masculino , Condicionamento Físico Animal/instrumentação , Pressão , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA