Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Brain ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39279645

RESUMO

Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.

2.
Brain ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082157

RESUMO

Patatin-like phospholipase domain-containing lipase 8 (PNPLA8), one of the calcium-independent phospholipase A2 enzymes, is involved in various physiological processes through the maintenance of membrane phospholipids. Biallelic variants in PNPLA8 have been associated with a range of paediatric neurodegenerative disorders. However, the phenotypic spectrum, genotype-phenotype correlations and the underlying mechanisms are poorly understood. Here, we newly identified 14 individuals from 12 unrelated families with biallelic ultra-rare variants in PNPLA8 presenting with a wide phenotypic spectrum of clinical features. Analysis of the clinical features of current and previously reported individuals (25 affected individuals across 20 families) showed that PNPLA8-related neurological diseases manifest as a continuum ranging from variable developmental and/or degenerative epileptic-dyskinetic encephalopathy to childhood-onset neurodegeneration. We found that complete loss of PNPLA8 was associated with the more profound end of the spectrum, with congenital microcephaly. Using cerebral organoids generated from human induced pluripotent stem cells, we found that loss of PNPLA8 led to developmental defects by reducing the number of basal radial glial cells and upper-layer neurons. Spatial transcriptomics revealed that loss of PNPLA8 altered the fate specification of apical radial glial cells, as reflected by the enrichment of gene sets related to the cell cycle, basal radial glial cells and neural differentiation. Neural progenitor cells lacking PNPLA8 showed a reduced amount of lysophosphatidic acid, lysophosphatidylethanolamine and phosphatidic acid. The reduced number of basal radial glial cells in patient-derived cerebral organoids was rescued, in part, by the addition of lysophosphatidic acid. Our data suggest that PNPLA8 is crucial to meet phospholipid synthetic needs and to produce abundant basal radial glial cells in human brain development.

3.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704825

RESUMO

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pré-Escolar , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , Adulto Jovem
4.
Trends Analyt Chem ; 157: 116808, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36751553

RESUMO

Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.

5.
Mol Genet Metab ; 119(3): 214-222, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27623250

RESUMO

We report here the case of a young male who started to show verbal fluency disturbance, clumsiness and gait anomalies at the age of 3.5years and presented bilateral striatal necrosis. Clinically, the diagnosis was compatible with Leigh syndrome but the underlying molecular defect remained elusive even after exome analysis using autosomal/X-linked recessive or de novo models. Dosage of respiratory chain activity on fibroblasts, but not in muscle, underlined a deficit in complex I. Re-analysis of heterozygous probably pathogenic variants, inherited from one healthy parent, identified the p.Ala178Pro in NDUFAF6, a complex I assembly factor. RNA analysis showed an almost mono-allelic expression of the mutated allele in blood and fibroblasts and puromycin treatment on cultured fibroblasts did not lead to the rescue of the maternal allele expression, not supporting the involvement of nonsense-mediated RNA decay mechanism. Complementation assay underlined a recovery of complex I activity after transduction of the wild-type gene. Since the second mutation was not detected and promoter methylation analysis resulted normal, we hypothesized a non-exonic event in the maternal allele affecting a regulatory element that, in conjunction with the paternal mutation, leads to the autosomal recessive disorder and the different allele expression in various tissues. This paper confirms NDUFAF6 as a genuine morbid gene and proposes the coupling of exome sequencing with mRNA analysis as a method useful for enhancing the exome sequencing detection rate when the simple application of classical inheritance models fails.


Assuntos
Exoma/genética , Doença de Leigh/genética , Proteínas Mitocondriais/genética , Distúrbios da Fala/genética , Alelos , Pré-Escolar , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/fisiopatologia , Masculino , Mutação , Linhagem , Fenótipo , RNA Mensageiro/genética , Distúrbios da Fala/fisiopatologia , Degeneração Estriatonigral/congênito , Degeneração Estriatonigral/genética , Degeneração Estriatonigral/fisiopatologia
6.
Antimicrob Agents Chemother ; 58(1): 543-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217695

RESUMO

Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis. In this study, 46 novel chalcones were synthesized by microwave-assisted Claisen-Schmidt condensation, purified, characterized by high-resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance, and infrared spectroscopy, and tested for their toxicity against G. intestinalis under standard anaerobic conditions. As a novel approach, compounds showing antigiardial activity under anaerobiosis were also assayed under microaerobic conditions, and their selectivity against parasitic cells was assessed in a counterscreen on human epithelial colorectal adenocarcinoma cells. Among the tested compounds, three [30(a), 31(e), and 33] were more effective in the presence of O2 than under anaerobic conditions and killed the parasite 2 to 4 times more efficiently than metronidazole under anaerobiosis. Two of them [30(a) and 31(e)] proved to be selective against parasitic cells, thus representing potential candidates for the design of novel antigiardial drugs. This study highlights the importance of testing new potential antigiardial agents not only under anaerobic conditions but also at low, more physiological O2 concentrations.


Assuntos
Antiprotozoários/efeitos adversos , Antiprotozoários/farmacologia , Chalconas/química , Chalconas/farmacologia , Giardia lamblia/efeitos dos fármacos , Piperazinas/química , Piperidinas/química , Antiprotozoários/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Chalconas/efeitos adversos , Humanos , Piperazina
7.
Expert Rev Mol Diagn ; 23(9): 797-814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642407

RESUMO

INTRODUCTION: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.


Mitochondria generate our bodies' energy, and they contain their own circular DNA molecules. Changes in this mitochondrial DNA can cause a wide range of genetic diseases. Improved computer processing of the sequence of this DNA and new techniques that can read the full DNA sequence in one experiment may enhance our ability to understand these genetic variants.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos
8.
Nat Rev Neurol ; 18(11): 689-698, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36257993

RESUMO

The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , DNA Mitocondrial/genética , Mitocôndrias/genética , Terapia Genética
9.
Nat Commun ; 13(1): 6324, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344503

RESUMO

Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk .


Assuntos
Genoma , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Fenótipo
10.
Trends Endocrinol Metab ; 32(4): 224-237, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640250

RESUMO

Over the past decade, it has become clear that lipid homeostasis is central to cellular metabolism. Lipids are particularly abundant in the central nervous system (CNS) where they modulate membrane fluidity, electric signal transduction, and synaptic stabilization. Abnormal lipid profiles reported in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and traumatic brain injury (TBI), are further support for the importance of lipid metablism in the nervous system. Cardiolipin (CL), a mitochondria-exclusive phospholipid, has recently emerged as a focus of neurodegenerative disease research. Aberrant CL content, structure, and localization are linked to impaired neurogenesis and neuronal dysfunction, contributing to aging and the pathogenesis of several neurodegenerative diseases, such as AD and PD. Furthermore, the highly tissue-specific acyl chain composition of CL confers it significant potential as a biomarker to diagnose and monitor the progression in several neurological diseases. CL also represents a potential target for pharmacological strategies aimed at treating neurodegeneration. Given the equipoise that currently exists between CL metabolism, mitochondrial function, and neurological disease, we review the role of CL in nervous system physiology and monogenic and neurodegenerative disease pathophysiology, in addition to its potential application as a biomarker and pharmacological target.


Assuntos
Cardiolipinas , Mitocôndrias , Doenças Neurodegenerativas , Cardiolipinas/metabolismo , Sistema Nervoso Central , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo
11.
Curr Med Chem ; 26(16): 2918-2932, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29493440

RESUMO

Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.


Assuntos
DNA Mitocondrial/genética , Quadruplex G , Mitocôndrias/genética , RNA Mitocondrial/genética , Animais , Replicação do DNA , Humanos , Biossíntese de Proteínas , Transcrição Gênica
12.
Mech Ageing Dev ; 180: 97-106, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002926

RESUMO

Cellular senescence is a phenotype characterized by irreversible growth arrest, chronic elevated secretion of proinflammatory cytokines and matrix proteases, a phenomenon known as senescence-associated secretory phenotype (SASP). Biomarkers of cellular senescence have been shown to increase with age and degeneration of human disc tissue. Senescent disc cells in culture recapitulate features associated with age-related disc degeneration, including increased secretion of proinflammatory cytokines, matrix proteases, and fragmentation of matrix proteins. However, little is known of the metabolic changes that underlie the senescent phenotype of disc cells. To assess the metabolic changes, we performed a bioenergetic analysis of in vitro oxidative stress-induced senescent (SIS) human disc cells. SIS disc cells acquire SASP and exhibit significantly elevated mitochondrial content and mitochondrial ATP-linked respiration. The metabolic changes appear to be driven by the upregulated protein secretion in SIS cells as abrogation of protein synthesis using cycloheximide decreased mitochondrial ATP-linked respiration. Taken together, the results of the study suggest that the increased energy generation state supports the secretion of senescent associated proteins in SIS disc cells.


Assuntos
Senescência Celular , Metabolismo Energético , Disco Intervertebral/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , Adulto , Feminino , Humanos , Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia
13.
Redox Biol ; 22: 101138, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30802716

RESUMO

Pulmonary arterial hypertension (PAH) is a complex degenerative disorder marked by aberrant vascular remodeling associated with hyperproliferation and migration of endothelial cells (ECs). Previous reports implicated bone morphogenetic protein antagonist Gremlin 1 in this process; however, little is known of the molecular mechanisms involved. The current study was designed to test whether redox signaling initiated by NADPH oxidase 1 (Nox1) could promote transcription factor CREB activation by redox factor 1 (Ref-1), transactivation of Gremlin1 transcription, EC migration, and proliferation. Human pulmonary arterial EC (HPAECs) exposed in vitro to hypoxia to recapitulate PAH signaling displayed induced Nox1 expression, reactive oxygen species (ROS) production, PKA activity, CREB phosphorylation, and CREB:CRE motif binding. These responses were abrogated by selective Nox1 inhibitor NoxA1ds and/or siRNA Nox1. Nox1-activated CREB migrated to the nucleus and bound to Ref-1 leading to CREB:CRE binding and Gremlin1 transcription. CHiP assay and CREB gene-silencing illustrated that CREB is pivotal for hypoxia-induced Gremlin1, which, in turn, stimulates EC proliferation and migration. In vivo, participation of Nox1, CREB, and Gremlin1, as well as CREB:CRE binding was corroborated in a rat PAH model. Activation of a previously unidentified Nox1-PKA-CREB/Ref-1 signaling pathway in pulmonary endothelial cells leads to Gremlin1 transactivation, proliferation and migration. These findings reveal a new signaling pathway by which Nox1 via induction of CREB and Gremlin1 signaling contributes to vascular remodeling and provide preclinical indication of its significance in PAH.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , NADPH Oxidase 1/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biomarcadores , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Fosforilação , Ligação Proteica , Transporte Proteico , Ratos
14.
Sci Rep ; 7(1): 9909, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855660

RESUMO

Helicobacter pullorum is an avian bacterium that causes gastroenteritis, intestinal bowel and hepatobiliary diseases in humans. Although H. pullorum has been shown to activate the mammalian innate immunity with release of nitric oxide (NO), the proteins that afford protection against NO and reactive nitrogen species (RNS) remain unknown. Here several protein candidates of H. pullorum, namely a truncated (TrHb) and a single domain haemoglobin (SdHb), and three peroxiredoxin-like proteins (Prx1, Prx2 and Prx3) were investigated. We report that the two haemoglobin genes are induced by RNS, and that SdHb confers resistance to nitrosative stress both in vitro and in macrophages. For peroxiredoxins, the prx2 and prx3 expression is enhanced by peroxynitrite and hydrogen peroxide, respectively. Mutation of prx1 does not alter the resistance to these stresses, while the single ∆prx2 and double ∆prx1∆prx2 mutants have decreased viability. To corroborate the physiological data, the biochemical analysis of the five recombinant enzymes was done, namely by stopped-flow spectrophotometry. It is shown that H. pullorum SdHb reacts with NO much more quickly than TrHb, and that the three Prxs react promptly with peroxynitrite, Prx3 displaying the highest reactivity. Altogether, the results unveil SdHb and Prx3 as major protective systems of H. pullorum against nitrosative stress.


Assuntos
Infecções por Helicobacter/microbiologia , Helicobacter/patogenicidade , Estresse Nitrosativo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Helicobacter/genética , Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Humanos , Intestinos/microbiologia , Intestinos/patologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana/genética , Mutação , Óxido Nítrico/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Virulência
15.
G3 (Bethesda) ; 7(10): 3533-3542, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28860183

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo, testing RNA guides, and detecting recombinant mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase/métodos , Alelos , Animais , Feminino , Camundongos Endogâmicos C57BL
16.
Mol Biochem Parasitol ; 206(1-2): 56-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26672398

RESUMO

The microaerophilic protist Giardia intestinalis is the causative agent of giardiasis, one of the most common intestinal infectious diseases worldwide. The pathogen lacks not only respiratory terminal oxidases (being amitochondriate), but also several conventional antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase. In spite of this, since living attached to the mucosa of the proximal small intestine, the parasite should rely on an efficient antioxidant system to survive the oxidative and nitrosative stress conditions found in this tract of the human gut. Here, we review current knowledge on the antioxidant defence systems in G. intestinalis, focusing on the progress made over the last decade in the field. The relevance of this research and future perspectives are discussed.


Assuntos
Flavoproteínas/metabolismo , Giardia lamblia/metabolismo , Hemeproteínas/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antioxidantes/metabolismo , Flavoproteínas/genética , Expressão Gênica , Giardia lamblia/genética , Giardia lamblia/patogenicidade , Giardíase/parasitologia , Giardíase/patologia , Hemeproteínas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Peroxirredoxinas/genética , Proteínas de Protozoários/genética
17.
Sci Rep ; 6: 23788, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030302

RESUMO

Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 µM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 µM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 µM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed.


Assuntos
Citocromos/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Sulfeto de Hidrogênio/farmacologia , Oxirredutases/genética , Aerobiose/efeitos dos fármacos , Aerobiose/genética , Cianetos/farmacologia , Grupo dos Citocromos b , Citocromos/deficiência , Complexo de Proteínas da Cadeia de Transporte de Elétrons/deficiência , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Isoenzimas/deficiência , Isoenzimas/genética , Cinética , Oxirredutases/deficiência , Oxigênio/farmacologia
18.
Oxid Med Cell Longev ; 2016: 3187560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881022

RESUMO

Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment.


Assuntos
Atrofia Óptica Hereditária de Leber/patologia , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química , Trifosfato de Adenosina/química , Adulto , Sobrevivência Celular , Feminino , Citometria de Fluxo , Fluorometria , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos/citologia , Mutação , Nitritos/química , Nitrogênio , Atrofia Óptica Hereditária de Leber/metabolismo , Estresse Oxidativo , Oxigênio , Consumo de Oxigênio , Tirosina/análogos & derivados , Tirosina/química
19.
PLoS Negl Trop Dis ; 8(1): e2631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416465

RESUMO

The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 (-•)) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO(-)). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO(-) rapidly (k = 4×10(5) M(-1) s(-1) and 2×10(5) M(-1) s(-1) at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis.


Assuntos
Giardia lamblia/enzimologia , Peroxirredoxinas/metabolismo , Animais , Derivados de Benzeno , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Giardia lamblia/genética , Peróxido de Hidrogênio/metabolismo , Cinética , NADP/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/isolamento & purificação , Ácido Peroxinitroso/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , terc-Butil Hidroperóxido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA