Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(6): 1167-1174, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34060308

RESUMO

Multiple, site-specific protein conjugation is increasingly attractive for the generation of antibody-drug conjugates (ADCs). As it is important to control the number and position of cargoes in an ADC, position-selective generation of reactive sites in the protein of interest is required. Formylglycine (FGly) residues are generated by enzymatic conversion of cysteine residues embedded in a certain amino acid sequence motif with a formylglycine-generating enzyme (FGE). The addition of copper ions increases FGE activity leading to the conversion of cysteines within less readily accepted sequences. With this tuned enzyme activity, it is possible to address two different recognition sequences using two aerobic formylglycine-generating enzymes. We demonstrate an improved and facile strategy for the functionalization of a DARPin (designed ankyrin repeat protein) and the single-chain antibody scFv425-Fc, both directed against the epidermal growth factor receptor (EGFR). The single-chain antibody was conjugated with monomethyl auristatin E (MMAE) and carboxyfluorescein (CF) and successfully tested for receptor binding, internalization, and cytotoxicity in cell culture, respectively.


Assuntos
Enzimas/metabolismo , Glicina/análogos & derivados , Imunoconjugados/química , Imunoconjugados/metabolismo , Aerobiose , Repetição de Anquirina , Cobre/química , Fluoresceínas/química , Glicina/metabolismo , Oligopeptídeos/química
2.
Chembiochem ; 20(16): 2074-2078, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31215729

RESUMO

Formylglycine-generating enzymes provide a convenient tool for site-specific protein derivatization. Their ability to oxidize cysteine or serine residues within a defined consensus sequence to Cα -formylglycine (FGly) allows for the targeted introduction of a unique chemical handle for various bioconjugation reactions. In recent years, oxygen-dependent FGly-generating enzyme saw broad use in protein functionalization and the generation of protein conjugates. Yet, the FGly-generating system AtsB, along with its capability to convert unusual aldehyde tag sequences, remains mostly unused. Herein, the ability of AtsB from Methanosarcina mazei to convert nonclassical aldehyde tags of the SX(A/P)XR-type and its potential use in bioconjugation chemistry are demonstrated.


Assuntos
Proteínas Ferro-Enxofre/química , Methanosarcina/química , S-Adenosilmetionina/química , Aldeídos/química , Radicais Livres/química , Estrutura Molecular , Serina/química
3.
Angew Chem Int Ed Engl ; 57(24): 7245-7249, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29579347

RESUMO

Formylglycine-generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site-specific oxidation of a cysteine residue to the aldehyde-containing amino acid Cα -formylglycine (FGly). This non-canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine-generating enzyme (FGE) and the iron-sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.


Assuntos
Bactérias/enzimologia , Glicina/análogos & derivados , Linhagem Celular , Cisteína/metabolismo , Glicina/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Methanosarcina/enzimologia , Oxirredução , Sulfatases/metabolismo
4.
Sci Transl Med ; 16(748): eadl2720, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776391

RESUMO

We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-µg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).


Assuntos
Anticorpos Biespecíficos , Claudinas , Macaca fascicularis , Linfócitos T , Animais , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/farmacocinética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Claudinas/metabolismo , Camundongos , RNA/metabolismo , Feminino , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Lipossomos , Nanopartículas
5.
Antibodies (Basel) ; 7(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31544857

RESUMO

Strategies for site-specific modification of proteins have increased in number, complexity, and specificity over the last years. Such modifications hold the promise to broaden the use of existing biopharmaceuticals or to tailor novel proteins for therapeutic or diagnostic applications. The recent quest for next-generation antibody-drug conjugates (ADCs) sparked research into techniques with site selectivity. While purely chemical approaches often impede control of dosage or locus of derivatization, naturally occurring enzymes and proteins bear the ability of co- or post-translational protein modifications at particular residues, thus enabling unique coupling reactions or protein fusions. This review provides a general overview and focuses on chemo-enzymatic methods including enzymes such as formylglycine-generating enzyme, sortase, and transglutaminase. Applications for the conjugation of antibodies and antibody mimetics are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA