Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(22): 221502, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327450

RESUMO

We present a new avenue to black hole evaporation using a heat-kernel approach analogous as for the Schwinger effect. Applying this method to an uncharged massless scalar field in a Schwarzschild spacetime, we show that spacetime curvature takes a similar role as the electric field strength in the Schwinger effect. We interpret our results as local pair production in a gravitational field and derive a radial production profile. The resulting emission peaks near the unstable photon orbit. Comparing the particle number and energy flux to the Hawking case, we find both effects to be of similar order. However, our pair production mechanism itself does not explicitly make use of the presence of a black hole event horizon.


Assuntos
Eletricidade , Temperatura Alta , Fótons
2.
Exp Astron (Dordr) ; 51(3): 1641-1676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511720

RESUMO

The Dark Ages and Cosmic Dawn are largely unexplored windows on the infant Universe (z ~ 200-10). Observations of the redshifted 21-cm line of neutral hydrogen can provide valuable new insight into fundamental physics and astrophysics during these eras that no other probe can provide, and drives the design of many future ground-based instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Array (HERA). We review progress in the field of high-redshift 21-cm Cosmology, in particular focussing on what questions can be addressed by probing the Dark Ages at z > 30. We conclude that only a space- or lunar-based radio telescope, shielded from the Earth's radio-frequency interference (RFI) signals and its ionosphere, enable the 21-cm signal from the Dark Ages to be detected. We suggest a generic mission design concept, CoDEX, that will enable this in the coming decades.

3.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064506

RESUMO

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

4.
Nature ; 541(7635): 32-33, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054609
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056602, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181531

RESUMO

We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation-the "endpoint formulation"-combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or "endpoints," with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent "bremsstrahlung" from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

6.
Astrobiology ; 9(1): 23-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203241

RESUMO

In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.


Assuntos
Agências Internacionais , Sociedades Científicas , Voo Espacial , Astronautas , Europa (Continente) , Meio Ambiente Extraterreno , Objetivos , Humanos , Cooperação Internacional , Marte , Planetas Menores , Lua , Robótica
7.
Science ; 307(5714): 1440-3, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15746420

RESUMO

We measured the angular rotation and proper motion of the Triangulum Galaxy (M33) with the Very Long Baseline Array by observing two H2O masers on opposite sides of the galaxy. By comparing the angular rotation rate with the inclination and rotation speed, we obtained a distance of 730 +/- 168 kiloparsecs. This distance is consistent with the most recent Cepheid distance measurement. M33 is moving with a velocity of 190 +/- 59 kilometers per second relative to the Milky Way. These measurements promise a method to determine dynamical models for the Local Group and the mass and dark-matter halos of M31, M33, and the Milky Way.

8.
Science ; 304(5671): 704-8, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15060284

RESUMO

We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60(-17)(+25)%. These observations place a lower limit to the mass density of Sagittarius A* of 1.4 x 10(4) solar masses per cubic astronomical unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA