Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000864

RESUMO

Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique in which the sound wave is detected by a quartz tuning fork (QTF). It enables particularly high specificity with respect to the excitation frequency and is well known for an extraordinarily sensitive analysis of gaseous samples. We have developed the first photoacoustic (PA) cell for QEPAS on solid samples. Periodic heating of the sample is excited by modulated light from an interband cascade laser (ICL) in the infrared region. The cell represents a half-open cylinder that exhibits an acoustical resonance frequency equal to that of the QTF and, therefore, additionally amplifies the PA signal. The antinode of the sound pressure of the first longitudinal overtone can be accessed by the sound detector. A 3D finite element (FE) simulation confirms the optimal dimensions of the new cylindrical cell with the given QTF resonance frequency. An experimental verification is performed with an ultrasound micro-electromechanical system (MEMS) microphone. The presented frequency-dependent QEPAS measurement exhibits a low noise signal with a high-quality factor. The QEPAS-based investigation of three different solid synthetics resulted in a linearly dependent signal with respect to the absorption.

2.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904978

RESUMO

Can ordinary Micro-Electro-Mechanical-Systems (MEMS) microphones be used for near-ultrasonic applications? Manufacturers often provide little information about the signal-to-noise ratio (SNR) in the ultrasound (US) range and, if they do, the data are often determined in a manufacturer-specific manner and are generally not comparable. Here, four different air-based microphones from three different manufacturers are compared with respect to their transfer functions and noise floor. The deconvolution of an exponential sweep and a traditional calculation of the SNR are used. The equipment and methods used are specified, which makes it easy to repeat or expand the investigation. The SNR of MEMS microphones in the near US range is mainly affected by resonance effects. These can be matched for applications with low-level signals and background noise such that the highest possible SNR can be achieved. Two MEMS microphones from Knowles performed best for the frequency range from 20 to 70 kHz; above 70 kHz, an Infineon model delivered the best performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA