Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003702

RESUMO

Withania somnifera, also known as Ashwagandha, has been used in traditional medicine for thousands of years. Due to the wide range of its activities, there has been interest in its possible beneficial effects on the human body. It is proved that, among others, Ashwagandha has anti-stress, anti-inflammatory, antimicrobial, anti-cancer, anti-diabetic, anti-obesity, cardioprotective, and hypolipidemic properties. Particularly interesting are its properties reported in the field of psychiatry and neurology: in Alzheimer's disease, Parkinson's disease, multiple sclerosis, depression, bipolar disorder, insomnia, anxiety disorders and many others. The aim of this review is to find and summarize the effect that Ashwagandha root extract has on the endocrine system and hormones. The multitude of active substances and the wide hormonal problems faced by modern society sparked our interest in the topic of Ashwagandha's impact on this system. In this work, we also attempted to draw conclusions as to whether W. somnifera can help normalize the functions of the human endocrine system in the future. The search mainly included research published in the years 2010-2023. The results of the research show that Ashwagandha can have a positive effect on the functioning of the endocrine system, including improving the secretory function of the thyroid gland, normalizing adrenal activity, and multidirectional improvement on functioning of the reproductive system. The main mechanism of action in the latter appears to be based on the hypothalamus-pituitary-adrenal (HPA) axis, as a decrease in cortisol levels and an increase in hormones such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in men were found, which results in stress level reduction and improvement in fertility. In turn, other studies prove that active substances from W. somnifera, acting on the body, cause an increase in the secretion of triiodothyronine (T3) and thyroxine (T4) by the thyroid gland and a subsequent decrease in the level of thyroid-stimulating hormone (TSH) in accordance with the hypothalamus-pituitary-thyroid (HPT) axis. In light of these findings, it is clear that Ashwagandha holds significant promise as a natural remedy for various health concerns, especially those related to the endocrine system. Future research may provide new insights into its mechanisms of action and expand its applications in both traditional and modern medicine. The safety and toxicity of Ashwagandha also remain important issues, which may affect its potential use in specific patient groups.


Assuntos
Withania , Masculino , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glândula Tireoide , Hormônio Luteinizante
2.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446877

RESUMO

Ferrocene is useful in modern organometallic chemistry due to its versatile applications in material sciences, catalysis, medicinal chemistry, and diagnostic applications. The ferrocene moiety can potentially serve many purposes in therapeutics and diagnostics. In the course of this study, (6-bromo-1-oxohexyl)ferrocene was combined with dimercaptomaleonitrile sodium salt to yield a novel maleonitrile derivative. Subsequently, this compound was subjected to an autocyclotetramerization reaction using the Linstead conditions in order to obtain an octaferrocenyl-substituted magnesium(II) sulfanyl porphyrazine. Following that, both compounds-the maleonitrile derivative and the porphyrazine derivative-were subjected to physicochemical characterization using UV-Vis, ES-TOF, MALDI-TOF, and one-dimensional and two-dimensional NMR spectroscopy. Moreover, the sulfanyl porphyrazine was subjected to various photophysical studies, including optical absorption and emission measurements, as well as the evaluation of its photochemical properties. Values of singlet oxygen generation quantum yields were obtained in different organic solvents. The electrochemical properties of the synthesized compounds were studied using cyclic voltammetry. According to the electrochemical results, the presence of electron-withdrawing oxohexyl groups attached to ferrocene afforded significantly more positive oxidation potentials of the ferrocene-based redox process up to 0.34 V vs. Fc+/Fc.


Assuntos
Oxigênio Singlete , Metalocenos , Oxirredução , Oxigênio Singlete/química , Solventes
3.
Molecules ; 27(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889282

RESUMO

A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV-VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect derived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response to H2O2 concentrations of 1-90 µM. A low detection limit of 0.18 µM and a high sensitivity of 640 µA mM-1 cm-2 were obtained. These results indicate that the obtained sensors could potentially be applied in biomedical and environmental fields.


Assuntos
Nanotubos de Carbono , Cobalto/química , Técnicas Eletroquímicas/métodos , Eletrodos , Compostos Ferrosos , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química , Ftalimidas
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124188, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554692

RESUMO

Novel BODIPY derivatives possessing different styryl substituents were synthesized using different methods of Knoevenagel-type condensation with conventional heating and microwave radiation in two conditions. Microwave-assisted synthesis significantly reduces reaction time while enhancing its efficiency. The introduction of styryl substituents at the 3 and 5 positions of the BODIPY core resulted in a substantial bathochromic shift, which was affected by the substituents within styryl groups. Depending on the solvents, the BODIPY with unsubstituted styryl groups possesses absorption maxima (λAbs) between 616 and 626 nm. While the analogs containing electron-donating methoxy and methylthio groups exhibited bathochromically shifted bands with λAbs values in the 633-654 nm range. Fluorescence studies revealed intensive emission of tested BODIPYs with fluorescence quantum yields at the 0.41-0.83 range. On the other hand, singlet oxygen quantum yields were very low. In the electrochemical studies, the CV and DPV scans showed the presence of three redox processes. The calculated electrochemical gaps were in the range of 1.71-1.87 V.

5.
J Clin Med ; 12(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37510734

RESUMO

Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.

6.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903741

RESUMO

A metal-free porphyrazine derivative with peripheral phthalimide substituents was metallated with a nickel(II) ion. The purity of the nickel macrocycle was confirmed using HPLC, and characterized by MS, UV-VIS, and 1D (1H, 13C) and 2D (1H-13C HSQC, 1H-13C HMBC, 1H-1H COSY) NMR techniques. The novel porphyrazine was combined with various carbon nanomaterials, such as carbon nanotubes-single walled (SWCNTs) and multi-walled (MWCNTs), and electrochemically reduced graphene oxide (rGO), to create hybrid electroactive electrode materials. The carbon nanomaterials' effect on the electrocatalytic properties of nickel(II) cations was compared. As a result, an extensive electrochemical characterization of the synthesized metallated porphyrazine derivative on various carbon nanostructures was carried out using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). An electrode modified with carbon nanomaterials GC/MWCNTs, GC/SWCNTs, or GC/rGO, respectively, was shown to have a lower overpotential than a bare glassy carbon electrode (GC), allowing for the measurement of hydrogen peroxide in neutral conditions (pH 7.4). It was shown that among the tested carbon nanomaterials, the modified electrode GC/MWCNTs/Pz3 exhibited the best electrocatalytic properties in the direction of hydrogen peroxide oxidation/reduction. The prepared sensor was determined to enable a linear response to H2O2 in concentrations ranging between 20-1200 µM with the detection limit of 18.57 µM and sensitivity of 14.18 µA mM-1 cm-2. As a result of this research, the sensors produced here may find use in biomedical and environmental applications.

7.
J Photochem Photobiol B ; 204: 111803, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32000112

RESUMO

Infectious diseases constitute a serious problem for human health and life. Although many bacterial and fungal infections can be successfully cured by commonly used antibiotics, a new threat emerges in the form of microbial resistance. For this reason, researchers try to find not only new active pharmaceutical ingredients for conventional antibiotherapy but also try to develop new strategies of microbial inactivation. Photodynamic antimicrobial chemotherapy, which relies on reactive oxygen species generated in situ in the presence of a photosensitizer and with the light of an appropriate wavelength, is one of them. Porphyrazines have been considered as potential photosensitizers for anticancer and antimicrobial photodynamic therapy. In this study, three tribenzoporphyrazines with dendrimeric peripheral substituents were subjected to in vitro antimicrobial photocytotoxicity study. One magnesium(II) tribenzoporphyrazine with peripheral 3,5-bis(3,5-dimethoxybenzyloxy)benzylsulfanyl substituents was synthesized and subjected to physicochemical characterization using NMR, UV-Vis, and mass spectrometry techniques. In photochemical studies this molecule revealed moderate singlet oxygen generation ability (ΦΔDMF = 0.12, ΦΔDMSO = 0.13). The other two magnesium(II) tribenzoporphyrazines applied in the biological study were 4-[3,5-di(hydroxymethyl)phenoxy]butylsulfanyl-substituted tribenzoporphyrazine and 4-[3,5-bis(benzyloxy)benzyloxy]phenyl-substituted tribenzopyrazinoporphyrazine. For the assessment, three microbial strains were chosen: Gram-positive bacteria Staphylococcus aureus ATCC 25923, Gram-negative bacteria Escherichia coli ATCC 25922, and fungal strain Candida albicans ATCC 10231. Very high activity against Staphylococcus aureus at low 10-6 M concentration was recorded for magnesium(II) tribenzoporphyrazines with peripheral 3,5-bis(3,5-dimethoxybenzyloxy)benzylsulfanyl and 4-[3,5-di(hydroxymethyl)phenoxy]butylsulfanyl substituents with calculated log reductions of 4.4 and 4.8, respectively. It is worth noting that magnesium(II) tribenzoporphyrazine with 4-[3,5-di(hydroxymethyl)phenoxy]butylsulfanyl substituents revealed also 3.2 log reduction in bacterial growth at the concentration 10-7 M.


Assuntos
Anti-Infecciosos/farmacologia , Dendrímeros/química , Pirazinas/química , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos da radiação , Luz , Testes de Sensibilidade Microbiana , Pirazinas/síntese química , Pirazinas/farmacologia , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos da radiação
8.
J Photochem Photobiol B ; 181: 1-13, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29482031

RESUMO

Three magnesium sulfanyl porphyrazines differing in the size of peripheral substituents (3,5-dimethoxybenzylsulfanyl, (3,5-dimethoxybenzyloxy)benzylsulfanyl, 3,5-bis[(3,5-bis[(3,5-dimethoxybenzyloxy)benzyloxy]benzylsulfanyl) were exposed to visible and ultraviolet radiation (UV A + B + C) in order to determine their photochemical properties. The course of photochemical reactions in dimethylformamide solutions and the ability of the systems to generate singlet oxygen were studied by UV-Vis spectroscopy, which additionally gave information on aggregation processes. The porphyrazines were found to be stable upon visible light irradiation conditions, but when exposed to high energy UV radiation, the efficient photodegradation of these macrocycles was observed. Therefore, these three magnesium sulfanyl porphyrazines were incorporated into chitosan matrix. The obtained thin films of chitosan doped with porphyrazines were subjected to polychromatic UV-radiation and studied by spectroscopic methods (UV-Vis, FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Application of chitosan as a polymer matrix for porphyrazines was found to be successful method that effectively stopped the unwelcome degradation of macrocycles, thus worth considering for their photoprotection. In addition, the surface properties of the hybrid material were determined by contact angle measurements and calculation of surface free energy. Intermolecular interactions between these novel porphyrazines and chitosan were detected. The mechanism of photochemical reactions occurring in studied systems has been discussed.


Assuntos
Quitosana/química , Porfirinas/química , Luz , Compostos Macrocíclicos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Fotólise/efeitos da radiação , Oxigênio Singlete/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
9.
Chempluschem ; 81(5): 460-470, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-31968780

RESUMO

Sulfanyl porphyrazines substituted at their periphery with different dendrimeric moieties up to their first generation were synthesized and characterized by photochemical and biological methods. The presence of a dendrimeric periphery enhanced the spectral properties of the porphyrazines studied. The singlet-oxygen-generation quantum yield of the obtained macrocycles ranged from 0.02 to 0.20 and was strongly dependent on the symmetry of the compounds and the terminal groups of the dendritic outer shell. The in vitro biological effects of three most promising tribenzoporphyrazines were examined; the results indicated their potential as photosensitizers for photodynamic therapy (PDT) against two oral squamous cell carcinoma cell lines derived from the tongue. The highest photocytotoxicity was found for sulfanyl tribenzoporphyrazine that possessed 4-[3,5-di(hydroxymethyl)phenoxy]butyl substituents with nanomolar IC50 values at 10 and 42 nm against CAL 27 and HSC-3 cell lines, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA