Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 19(1): 49-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23017017

RESUMO

Modafinil may be useful for treating stimulant abuse, but the mechanisms by which it acts to do so are unknown. Indeed, a primary effect of modafinil is to inhibit dopamine transport, which typically promotes rather than inhibits motivated behavior. Therefore, we examined the role of nucleus accumbens extracellular glutamate and the group II metabotropic glutamate receptor (mGluR2/3) in modafinil effects. One group of rats was trained to self-administer cocaine for 10 days and extinguished, then given priming injections of cocaine to elicit reinstatement. Modafinil (300 mg/kg, intraperitoneal) inhibited reinstated cocaine seeking (but did not alter extinction responding by itself), and this effect was prevented by pre-treatment with bilateral microinjections of the mGluR2/3 antagonist LY-341495 (LY) into nucleus accumbens core. No reversal of modafinil effects was seen after unilateral accumbens core LY, or bilateral LY in the rostral pole of accumbens. Next, we sought to explore effects of modafinil on extracellular glutamate levels in accumbens after chronic cocaine. Separate rats were administered non-contingent cocaine, and after 3 weeks of withdrawal underwent accumbens microdialysis. Modafinil increased extracellular accumbens glutamate in chronic cocaine, but not chronic saline-pre-treated animals. This increase was prevented by reverse dialysis of cystine-glutamate exchange or voltage-dependent calcium channel antagonists. Voltage-dependent sodium channel blockade partly attenuated the increase in glutamate, but mGluR1 blockade did not. We conclude that modafinil increases extracellular glutamate in nucleus accumbens from glial and neuronal sources in cocaine-exposed rats, which may be important for its mGluR2/3-mediated antirelapse properties.


Assuntos
Compostos Benzidrílicos/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Comportamento de Procura de Droga/efeitos dos fármacos , Glutamatos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Promotores da Vigília/farmacologia , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Análise de Variância , Animais , Compostos Benzidrílicos/administração & dosagem , Cocaína/administração & dosagem , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Glutamatos/metabolismo , Masculino , Microdiálise/métodos , Microinjeções , Modafinila , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Prevenção Secundária , Autoadministração/estatística & dados numéricos , Promotores da Vigília/administração & dosagem , Xantenos/administração & dosagem , Xantenos/farmacologia
2.
Biol Psychiatry ; 80(3): 246-56, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26386479

RESUMO

BACKGROUND: Learned associations between environmental stimuli and rewards play a critical role in addiction. Associative learning requires alterations in sparsely distributed populations of strongly activated neurons, or neuronal ensembles. Until recently, assessment of functional alterations underlying learned behavior was restricted to global neuroadaptations in a particular brain area or cell type, rendering it impossible to identify neuronal ensembles critically involved in learned behavior. METHODS: We used Fos-GFP transgenic mice that contained a transgene with a Fos promoter driving expression of green fluorescent protein (GFP) to detect neurons that were strongly activated during associative learning, in this case, context-independent and context-specific cocaine-induced locomotor sensitization. Whole-cell electrophysiological recordings were used to assess synaptic alterations in specifically activated GFP-positive (GFP+) neurons compared with surrounding nonactivated GFP-negative (GFP-) neurons 90 min after the sensitized locomotor response. RESULTS: After context-independent cocaine sensitization, cocaine-induced locomotion was equally sensitized by repeated cocaine injections in two different sensitization contexts. Correspondingly, silent synapses in these mice were induced in GFP+ neurons, but not GFP- neurons, after sensitization in both of these contexts. After context-specific cocaine sensitization, cocaine-induced locomotion was sensitized exclusively in mice trained and tested in the same context (paired group), but not in mice that were trained in one context and then tested in a different context (unpaired group). Silent synapses increased in GFP+ neurons, but not in GFP- neurons from mice in the paired group, but not from mice in the unpaired group. CONCLUSIONS: Our results indicate that silent synapses are formed only in neuronal ensembles of the nucleus accumbens shell that are related to associative learning.


Assuntos
Aprendizagem por Associação/fisiologia , Neurônios/metabolismo , Núcleo Accumbens/citologia , Sinapses/metabolismo , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Cocaína/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Núcleo Accumbens/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA