Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(14): 8001-8009, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28678487

RESUMO

Methane emissions from oil and gas facilities can exhibit operation-dependent temporal variability; however, this variability has yet to be fully characterized. A field campaign was conducted in June 2014 in the Eagle Ford basin, Texas, to examine spatiotemporal variability of methane emissions using four methods. Clusters of methane-emitting sources were estimated from 14 aerial surveys of two ("East" or "West") 35 × 35 km grids, two aircraft-based mass balance methods measured emissions repeatedly at five gathering facilities and three flares, and emitting equipment source-types were identified via helicopter-based infrared camera at 13 production and gathering facilities. Significant daily variability was observed in the location, number (East: 44 ± 20% relative standard deviation (RSD), N = 7; West: 37 ± 30% RSD, N = 7), and emission rates (36% of repeat measurements deviate from mean emissions by at least ±50%) of clusters of emitting sources. Emission rates of high emitters varied from 150-250 to 880-1470 kg/h and regional aggregate emissions of large sources (>15 kg/h) varied up to a factor of ∼3 between surveys. The aircraft-based mass balance results revealed comparable variability. Equipment source-type changed between surveys and alterations in operational-mode significantly influenced emissions. Results indicate that understanding temporal emission variability will promote improved mitigation strategies and additional analysis is needed to fully characterize its causes.


Assuntos
Metano , Gás Natural , Poluentes Atmosféricos , Texas
2.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699374

RESUMO

Air quality management commonly aims to mitigate emissions of oxides of nitrogen (NOx) from combustion, reducing ozone and particulate matter pollution. Despite such efforts, regulations have recently proven ineffective in rural areas like the Salton Sea Air Basin of Southern California, which routinely violates air quality standards. With $2 billion in annual agricultural sales and low population density, air quality in the region is likely influenced by year-round farming. We conducted NOx source apportionment using nitrogen stable isotopes of ambient NO2, which indicate a substantial contribution of soil-emitted NOx. The soil source strength was estimated based on the mean δ15N-NOx from each emission category in the California Air Resources Board's NOx inventory. Our annual average soil emission estimate for the air basin was 11.4 ± 4 tons/d, representing ~30% of the extant NOx inventory, 10× larger than the state's inventory. Therefore, the impact of soil NOx in agricultural regions must be re-evaluated.

3.
J Air Waste Manag Assoc ; 72(5): 434-454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263246

RESUMO

Archived Ozone Design Values (ODVs) provide smoothed temporal records of maximum ozone concentrations impacting monitoring sites throughout the US. Utilizing time series of ODVs recorded at sites along the US West Coast, we separately estimate ODV contributions from US background ozone and from production driven by US anthropogenic precursor emissions. Sondes launched from Trinidad Head in northern California measure the vertical distribution of baseline ozone transported ashore from the Pacific; this profile is reflected in the increase of the US background ODV contribution with monitoring site elevation in both rural and urban areas. The ODVs that would result from US background ozone alone are small at coastal, sea level locations (average ~45 ppb), but increase with altitude; above 1 km US background ODVs can exceed 60 ppb. US background ozone contributions now constitute the majority of the maximum ODVs throughout the US west coast region, including the Los Angeles urban area, which records the country's highest ODVs. US anthropogenic emissions presently cause enhancements of 35 to 55 ppb to the maximum ODVs in the Los Angeles area; thus, local emission controls can further reduce ozone even though the background contribution is larger. In other US west coast urban areas ODV enhancements from US anthropogenic emissions are much smaller than the US background ODV contribution. The past decrease in US anthropogenic ODV enhancements from emission controls is larger than generally realized - a factor of more than 6 from 1980 to 2020, while US background ODV contributions varied to only a small extent over those four decades. Wildfire impacts on ODVs are significant in urban areas of the Pacific Northwest, but not over the vast northern US rural region. There is an indication that agricultural emissions of nitrogen oxides in California's Salinas Valley increase downwind maximum ODVs by 5-10 ppb.Implications: In 2020 the ozone design values (ODVs) resulting from transported background ozone alone are now larger than the ODV enhancements from US anthropogenic precursor emissions, even in the Los Angeles urban area, where the nation's highest ODVs are recorded. The US anthropogenic ODV enhancements have been reduced by more than a factor of 6 from 1980 to 2020. The maximum US background ODV contributions have varied somewhat, but in each of the US west coast urban areas it was 60 ppb or larger in 2000. These contributions are so large that reducing maximum urban ODVs to the 70 ppb required by the 2015 ozone NAAQS is very difficult. There remains relatively little room for further reducing ODVs through domestic emission controls alone. From this perspective, degraded US ozone air quality in the western US is primarily due to the US background ozone contribution, with the US anthropogenic enhancement making a significant, but smaller contribution. Notably, the US background ODV has slowly decreased (~1 ppb decade-1; Parrish, Derwent, and Faloona 2021) since the mid-2000s; cooperative, international emission control efforts aimed at continuing or even accelerating this background ozone decrease may be an effective approach to further ODV reductions, since the US background ODV is largely due to a hemisphere-wide, transported reservoir of ozone with contributions from all northern midlatitude continents. Given the major contribution of background ozone to observed ODVs, future reviews of the ozone NAAQS will be better informed if observational-based estimates of background ODV contributions are considered, in addition to model-derived estimates upon which past reviews have solely relied.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Ozônio/análise , Estados Unidos
4.
J Air Waste Manag Assoc ; 71(11): 1397-1406, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166173

RESUMO

Quantification of the magnitude and long-term changes in ozone concentrations transported into the U.S. is important for effective air quality policy development. We synthesize multiple published trend analyses of western U.S. baseline ozone, and show that all results are consistent with an overall, non-linear change - a rapid increase (~5 ppb/decade) during the 1980s that slowed in the 1990s, maximized in the mid-2000s, and was followed by a slow decrease (~1 ppb/decade) thereafter. This non-linear change accounts for ~2/3 of the variance in 28 published linear trend analyses; we attribute the other 1/3 of the variance to unquantified autocorrelation in the analyzed data sets that result primarily from meteorologically driven interannual ozone variability. Recent systematic changes in baseline ozone on the U.S. West Coast have been relatively small - the standard deviation of the 2-year means over the 1990-2017 period is 1.5 ppb. International efforts to reduce anthropogenic precursor emissions from all northern mid-latitude sources could possibly reduce baseline ozone concentrations, thereby improving U.S. ozone air quality.Implications: Ozone is an air pollutant with significant human and ecological health impacts. Air masses transported into the western U.S. from over the Pacific Ocean carry ozone concentrations that are, on average, a large fraction of the U.S. health standard. The US EPA policy assessment conducted for the recent review of the ozone National Ambient Air Quality Standard (NAAQS) found that 2016 regional average MDA8 ozone concentrations in the western US maximized in summer at ~52 ppb and that ~40 ppb of that maximum was contributed by ozone of natural and transported anthropogenic contributions. Thus, quantifying these trans-boundary background ozone concentrations has been identified as an important issue for a complete understanding of US air quality. Published analyses of temporal trends of these transported ozone concentrations vary widely, from early reports of increases to more recent reports of decreases. We show that the long-term ozone changes are nonlinear, with substantial concentration increases (as large as ~5 ppb/decade) before the mid-2000s when a maximum is reached, followed by a small decrease of ~1 ppb/decade thereafter. Superimposed on the overall changes is significant interannual variability that makes accurate determination of systematic trends over decade-scale time periods uncertain. The end of the previously increasing trends, and the recent decrease in transported ozone concentrations, is a good news for U.S. air quality, as it eases the difficulty of achieving the ozone air quality standard.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos , Ozônio/análise , Estados Unidos , United States Environmental Protection Agency
5.
Atmos Chem Phys ; 17(23): 14747-14770, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-32704248

RESUMO

This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3 - (p)) concentrations made during the wintertime DISCOVER-AQ study at one of the most polluted cities in the United States, Fresno, CA in the San Joaquin Valley (SJV) and focuses on development of understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3 - (p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3 - (p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3 - (p) concentrations. Further, they indicate that nocturnal production of NO3 - (p) in the RL, along with daytime photochemical production, can contribute substantially to the build-up and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer heights characteristic of wintertime pollution events in the SJV intensifies the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3 - (p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3 - (p) concentrations. Entrainment of clean free tropospheric air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3 - (p) and limits build-up during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on daytime particulate nitrate concentrations is important but limited by an excess of ammonia in the region, which leads to only a small fraction of nitrate existing in the gas-phase even during the warmer daytime. However, in late afternoon, when diminishing solar heating leads to a rapid fall in the mixed boundary layer height, the impact of surface deposition is temporarily enhanced and can lead to a substantial decline in surface-level particulate nitrate concentrations; this enhanced deposition is quickly arrested by a decrease in surface temperature, which drops the gas-phase fraction to near zero. The overall importance of enhanced late afternoon gas-phase loss to the multiday build-up of pollution events is limited by the very shallow nocturnal boundary layer. The case study here demonstrates that mixing down of NO3 - (p) from the RL can contribute a majority of the surface-level NO3 - (p) in the morning (here, ~80%), and a strong influence can persist into the afternoon even when photochemical production is maximum. The particular day-to-day contribution of aloft nocturnal NO3 - (p) production to surface concentrations will depend on prevailing chemical and meteorological conditions. Although specific to the SJV, the observations and conceptual framework further developed here provide general insights into the evolution of pollution episodes in wintertime environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA