Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37963767

RESUMO

Activity in the basolateral amygdala complex (BLA) is needed to encode fears acquired through contact with both innate sources of danger (i.e., things that are painful) and learned sources of danger (e.g., being threatened with a gun). However, within the BLA, the molecular processes required to consolidate the two types of fear are not the same: protein synthesis is needed to consolidate the first type of fear (so-called first-order fear) but not the latter (so-called second-order fear). The present study examined why first- and second-order fears differ in this respect. Specifically, it used a range of conditioning protocols in male and female rats, and assessed the effects of a BLA infusion of the protein synthesis inhibitor, cycloheximide, on first- and second-order conditioned fear. The results revealed that the differential protein synthesis requirements for consolidation of first- and second-order fears reflect differences in what is learned in each case. Protein synthesis in the BLA is needed to consolidate fears that result from encoding of relations between stimuli in the environment (stimulus-stimulus associations, typical for first-order fear) but is not needed to consolidate fears that form when environmental stimuli associate directly with fear responses emitted by the animal (stimulus-response associations, typical for second-order fear). Thus, the substrates of Pavlovian fear conditioning in the BLA depend on the way that the environment impinges upon the animal. This is discussed with respect to theories of amygdala function in Pavlovian fear conditioning, and ways in which stimulus-response associations might be consolidated in the brain.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Feminino , Ratos , Masculino , Animais , Tonsila do Cerebelo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia
2.
J Exp Psychol Anim Learn Cogn ; 50(2): 77-98, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587939

RESUMO

Rescorla (2000, 2001) interpreted his compound test results to show that both common and individual error terms regulate associative change such that the element of a conditioned compound with the greater prediction error undergoes greater associative change than the one with the smaller prediction error. However, it has recently been suggested that uncertainty, not prediction error, is the primary determinant of associative change in people (Spicer et al., 2020, 2022). The current experiments use the compound test in a continuous outcome allergist task to assess the role of uncertainty in associative change, using two different manipulations of uncertainty: outcome uncertainty (where participants are uncertain of the level of the outcome on a particular trial) and causal uncertainty (where participants are uncertain of the contribution of the cue to the level of the outcome). We replicate Rescorla's compound test results in the case of both associative gains (Experiment 1) and associative losses (Experiment 3) and then provide evidence for greater change to more uncertain cues in the case of associative gains (Experiments 2 and 4), but not associative losses (Experiments 3 and 5). We discuss the findings in terms of the notion of theory protection advanced by Spicer et al., and other ways of thinking about the compound test procedure, such as that proposed by Holmes et al. (2019). (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Aprendizagem por Associação , Sinais (Psicologia) , Humanos , Incerteza , Aprendizagem por Associação/fisiologia
3.
Neurosci Biobehav Rev ; 138: 104687, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35561894

RESUMO

Sensory preconditioned and second-order conditioned responding are each well-documented. The former occurs in subjects (typically rats) exposed to pairings of two relatively neutral stimuli, S2 and S1, and then to pairings of S1 and a motivationally significant event [an unconditioned stimulus (US)]; the latter occurs when the order of these experiences is reversed with rats being exposed to S1-US pairings and then to S2-S1 pairings. In both cases, rats respond when tested with S2 in a manner appropriate to the affective nature of the US, e.g., approach when the US is appetitive and withdrawal when it is aversive. This paper reviews the neural substrates of sensory preconditioning and second-order conditioning. It identifies commonalities and differences in the substrates of these so-called higher-order conditioning protocols and discusses these commonalities/differences in relation to what is learned. In so doing, the review highlights ways in which these types of conditioning enhance our understanding of how the brain encodes and retrieves different types of information to generate appropriate behavior.


Assuntos
Condicionamento Clássico , Condicionamento Psicológico , Animais , Condicionamento Operante , Humanos , Aprendizagem , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA