Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Ecol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167251

RESUMO

The landscape plant, Cinnamomum camphora, is a broad-spectrum insect-repelling tree species, mainly due to a diversity of terpenoids, such as camphor. Despite its formidable chemical defenses, C. camphora is easily attacked and invaded by a monophagous weevil pest, Pagiophloeus tsushimanus. Deciphering the key olfactory signal components regulating host preference could facilitate monitoring and control strategies for this pest. Herein, two host volatiles, camphor and ocimene, induced GC-EAD/EAG reactions in both male and female adult antennae. Correspondingly, Y-tube olfactometer assays showed that the two compounds were attractive to both male and female adults. In field assays, a self-made trap device baited with 5 mg dose d(+)-camphor captured significantly more P. tsushimanus adults than isopropanol solvent controls without sexual bias. The trunk gluing trap device baited with bait can capture adults, but the number was significantly less than that of the self-made trap device and adults often fell after struggling. The cross baffle trap device never trapped adults. Neither ocimene nor isopropanol solvent control captured adults. When used in combination, ocimene did not enhance the attraction of d(+)-camphor to both female and male adults. These results indicate that d(+)-camphor is a key active compound of P. tsushimanus adults for host location. The combination of the host-volatile lure based on d(+)-camphor and the self-made trapping device is promising to monitor and provide an eco-friendly control strategy for this novel pest P. tsushimanus in C. camphora plantations.

2.
Pest Manag Sci ; 79(10): 3529-3537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37198147

RESUMO

BACKGROUND: Commensal microorganisms are widely distributed in insect gut tissues and play important roles in host nutrition, metabolism, reproductive regulation, and especially immune functioning and tolerance to pathogens. Consequently, gut microbiota represent a promising resource for the development of microbial-based products for pest control and management. However, the interactions among host immunity, entomopathogen infections, and gut microbiota remain poorly understood for many arthropod pests. RESULTS: We previously isolated an Enterococcus strain (HcM7) from Hyphantria cunea larvae guts that increased the survival rates of larvae challenged with nucleopolyhedrovirus (NPV). Here, we further investigated whether this Enterococcus strain stimulates a protective immune response against NPV proliferation. Infection bioassays demonstrated that re-introduction of the HcM7 strain to germfree larvae preactivated the expression of several antimicrobial peptides (particularly H. cunea gloverin 1, HcGlv1), resulting in the significant repression of virus replication in host guts and hemolymph, and consequently improved host survivorship after NPV infection. Furthermore, silencing of the HcGlv1 gene by RNA interference markedly enhanced the deleterious effects of NPV infection, revealing a role of this gut symbiont-induced gene in host defenses against pathogenic infections. CONCLUSION: These results show that some gut microorganisms can stimulate host immune systems, thereby contributing to resistance to entomopathogens. Furthermore, HcM7, as a functional symbiotic bacteria of H. cunea larvae, may be a potential target for increasing the effectiveness of biocontrol agents against this devastating pest. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Larva , Nucleopoliedrovírus/fisiologia , Peptídeos Antimicrobianos , Enterococcus
3.
Artigo em Inglês | MEDLINE | ID: mdl-33548831

RESUMO

Pagiophloeus tsushimanus is a new, destructive, and monophagous weevil pest that thrives on Cinnamomum camphora, found in Shanghai. The functions of chemosensory genes involved in the host location and intraspecific communication of P. tsushimanus remain unknown. The male-female transcriptomes of P. tsushimanus adults were assembled using Illumina sequencing, and we focused on all chemosensory genes in transcriptomes. In general, 58,088 unigenes with a mean length of 1018.19 bp were obtained. In total, 39 odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 22 olfactory receptors (ORs), 16 gustatory receptors (GRs), eight ionotropic receptors (IRs), and five sensory neuron membrane proteins (SNMPs) were identified. PtsuOBPs comprised four subfamilies (20 Minus-C, one Plus-C, two Dimer, and 15 Classic). Both PtsuOBPs and PtsuCSPs contained a highly conserved sequence motif of cysteine residues. PtsuORs including one olfactory receptor co-receptors (Ptsu/Orco) comprised seven predicted transmembrane domains. Phylogenetic analysis revealed that PtsuOBPs, PtsuCSPs, and PtsuORs in P. tsushimanus exhibited low homology compared to other insect species. The results of tissue- and sex-specific expression patterns indicated that PtsuOBPs and PtsuORs were highly abundant in the antennae; whereas, PtsuCSPs were not only highly abundant in antennae, but also abdominal apexes, wings, and legs. In conclusion, these results enrich the gene database of P. tsushimanus, which may serve as a basis for identifying novel targets to disrupt olfactory key genes and may provide a reverse validation method to identify attractants for formulating potential eco-friendly control strategies for this pest.


Assuntos
Transcriptoma , Gorgulhos/genética , Animais , Cinnamomum camphora/parasitologia , Feminino , Proteínas de Insetos/genética , Canais Iônicos de Abertura Ativada por Ligante/genética , Masculino , Proteínas de Membrana/genética , Filogenia , Receptores Odorantes/genética , Células Receptoras Sensoriais/metabolismo , Gorgulhos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA