Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(4): e2200705, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461768

RESUMO

Hydrogel shape memory and actuating functionalities are heavily pursued and have found great potential in various application fields. However, their combination for more flexible and complicated morphing behaviors is still challenging. Herein, it is reported that by controlling the light-initiated polymerization of active hydrogel layers on shape memory hydrogel substrates, advanced morphing behaviors based on programmable hydrogel shapes and actuating trajectories are realized. The formation and photo-reduction-induced dissociation of Fe3+ -carboxylate coordination endow the hydrogel substrates with the shape memory functionality. The photo-reduced Fe2+ ions can diffuse from the substrates into the monomer solutions to initiate the polymerization of the thermally responsive active layers, whose actuating temperatures and amplitudes can be facially tuned by controlling their thicknesses and compositions. One potential application, a shape-programmable 3D hook that can lift an object with a specific shape, is also unveiled. The demonstrated strategy is extendable to other hydrogel systems to realize more versatile and complicated actuating behaviors.


Assuntos
Ácidos Carboxílicos , Hidrogéis , Hidrogéis/química , Temperatura , Polimerização , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA