Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 202: 106699, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393611

RESUMO

Top-down projections transmit a series of signals encoding pain sensation to the ventrolateral periaqueductal gray (vlPAG), where they converge with various incoming projections to regulate pain. Clarifying the upstream regulatory hierarchy of vlPAG can enhance our understanding of the neural circuitry involved in pain modulation. Here, we show that a in a mouse model of spared nerve injury (SNI), activation of a circuit arising from posterior paraventricular thalamic nucleus CaMKIIα-positive neurons (PVPCaMKIIα) projects to gamma-aminobutyric acid neurons in the rostral zona incerta (ZIrGABA) to facilitate the development of pain hypersensitivity behaviors. In turn, these ZIrGABA neurons project to CaMKIIα-positive neurons in the vlPAG (vlPAGCaMKIIα), a well-known neuronal population involved in pain descending modulation. In vivo calcium signal recording and whole-cell electrophysiological recordings reveal that the PVPCaMKIIα→ZIrGABA→vlPAGCaMKIIα circuit is activated in SNI models of persistent pain. Inhibition of this circuit using chemogenetics or optogenetics can alleviate the mechanical pain behaviors. Our study indicates that the PVPCaMKIIα→ZIrGABA→vlPAGCaMKIIα circuit is involved in the facilitation of neuropathic pain. This previously unrecognized circuit could be explored as a potential target for neuropathic pain treatment.

2.
Neurochem Res ; 48(8): 2350-2359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36947308

RESUMO

Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Traumatismos do Sistema Nervoso , Ratos , Animais , Regulação para Cima , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Neuralgia/genética , Neuralgia/metabolismo , Gânglios Simpáticos , Gânglios Espinais/metabolismo , Traumatismos do Sistema Nervoso/metabolismo , Epigênese Genética
3.
J Neuroinflammation ; 19(1): 144, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690777

RESUMO

BACKGROUND: The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown. METHODS: Using resting-state functional magnetic resonance imaging (rs-fMRI), genetic knockdown or overexpression, we systematically investigated the activity of PrL region in the pathogenesis of neuropathic pain/depression comorbid using the combined approaches of immunohistochemistry, electrophysiology, and behavior. RESULTS: The activity of PrL and the excitability of pyramidal neurons were decreased, and the osteoclastic tartrate-resistant acid phosphatase 5 (Acp5) expression in PrL neurons was upregulated following the acquisition of spared nerve injury (SNI)-induced comorbidity. Genetic knockdown of Acp5 in pyramidal neurons, but not parvalbumin (PV) neurons or somatostatin (SST) neurons, attenuated the decrease of spike number, depression-like behavior and mechanical allodynia in comorbidity rats. Overexpression of Acp5 in PrL pyramidal neurons decreased the spike number and induced the comorbid-like behavior in naïve rats. Moreover, the expression of interleukin-6 (IL-6), phosphorylated STAT3 (p-STAT3) and acetylated histone H3 (Ac-H3) were significantly increased following the acquisition of comorbidity in rats. Increased binding of STAT3 to the Acp5 gene promoter and the interaction between STAT3 and p300 enhanced acetylation of histone H3 and facilitated the transcription of Acp5 in PrL in the modeled rodents. Inhibition of IL-6/STAT3 pathway prevented the Acp5 upregulation and attenuated the comorbid-like behaviors in rats. CONCLUSIONS: These data suggest that the adaptation of PrL mediated by IL-6/STAT3/Acp5 pathway contributed to the comorbidity of neuropathic pain/depression induced by SNI.


Assuntos
Interleucina-6 , Neuralgia , Fosfatase Ácida/metabolismo , Animais , Comorbidade , Depressão/metabolismo , Histonas , Interleucina-6/metabolismo , Neuralgia/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
4.
Adv Sci (Weinh) ; 11(34): e2401855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973158

RESUMO

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.


Assuntos
Comportamento Animal , Depressão , Modelos Animais de Doenças , Tálamo , Animais , Depressão/fisiopatologia , Masculino , Tálamo/fisiopatologia , Comportamento Animal/fisiologia , Camundongos , Vias Neurais/fisiopatologia , Dor/fisiopatologia , Dor Crônica/fisiopatologia
5.
CNS Neurosci Ther ; 28(8): 1259-1267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35633059

RESUMO

AIMS: Potassium (K+ ) channels have been demonstrated to play a prominent involvement in nociceptive processing. Kir7.1, the newest members of the Kir channel family, has not been extensively studied in the CNS, and its function remains largely unknown. The present study investigated the role of spinal Kir7.1 in the development of pathological pain. METHODS AND RESULTS: Neuropathic pain was induced by spared nerve injury (SNI). The mechanical sensitivity was assessed by von Frey test. Immunofluorescence staining assay revealed that Kir7.1 was predominantly expressed in spinal neurons but not astrocytes or microglia in normal rats. Western blot results showed that SNI markedly decreased the total and membrane expression of Kir7.1 in the spinal dorsal horn accompanied by mechanical hypersensitivity. Blocking Kir7.1 with the specific antagonist ML418 or knockdown kir7.1 by siRNA led to mechanical allodynia. Co-IP results showed that the spinal kir7.1 channels were decorated by SUMO-1 but not SUMO-2/3, and Kir7.1 SUMOylation was upregulated following SNI. Moreover, inhibited SUMOylation by GA (E1 inhibitor) or 2-D08 (UBC9 inhibitor) can increase the spinal surface Kir7.1 expression. CONCLUSION: SUMOylation of the Kir7.1 in the spinal cord might contribute to the development of SNI-induced mechanical allodynia by decreasing the Kir7.1 surface expression in rats.


Assuntos
Hiperalgesia , Neuralgia , Animais , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Corno Dorsal da Medula Espinal/metabolismo , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA