RESUMO
Long non-coding RNAs (lncRNAs) are crucial regulators of tumorigenesis and progression in human cancer, including hepatocellular carcinoma (HCC). However, the role of most lncRNAs that are dysregulated in HCC remains to be elucidated. Here, we investigated the role of OSER1-AS1 in the progression of HCC. The results of database and qRT-PCR analysis demonstrated that OSER1-AS1 was highly expressed in HCC tissues and the high expression of OSER1-AS1 was closely associated with larger tumor size, advanced tumor stages, lower disease free survival and overall survival of HCC patients. OSER1-AS1 knockdown significantly inhibited the proliferation, invasion and migration of HCC cells, and induced the apoptosis. In addition, the dual luciferase reporter assay directly demonstrated that OSER1-AS1 functioned as a molecular sponge for miR-372-3p to promote Rab23 expression. Moreover, the results of immunohistochemistry and western blot analysis showed that Rab23 was highly expressed in HCC tissues, and the high expression of Rab23 was closely associated with the poor overall survival of HCC patients. Immunofluorescence assay also found the subcellular localization of Rab23 in HCC cells. Rab23 was obviously downregulated in cells that were transfected with miR-372-3p mimics. MiR-372-3p mimics significantly inhibited the proliferation and invasion of HCC cells). Rab23 restoration partially reversed miR-372-3p-induced tumor suppressive effects on HCC cells. In conclusion, we found that OSER1-AS1 acted as a ceRNA to sponge miR-372-3p, thereby positively regulating the Rab23 expression and ultimately acting as a tumor suppressor gene in HCC progression.
Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Células Tumorais CultivadasRESUMO
Our previous study highlighted the therapeutic potential of glutathione (GSH), an intracellular thiol tripeptide ubiquitous in mammalian tissues, in mitigating hepatic and cerebral damage. Building on this premise, we posited the hypothesis that GSH could be a promising candidate for treating acute hepatic encephalopathy (AHE). To verify this conjecture, we systematically investigated the feasibility of GSH as a therapeutic agent for AHE through comprehensive pharmacokinetic, pharmacodynamic, and mechanistic studies using a thioacetamide-induced AHE rat model. Our pharmacodynamic data demonstrated that oral GSH could significantly improve behavioral scores and reduce hepatic damage of AHE rats by regulating intrahepatic ALT, AST, inflammatory factors, and homeostasis of amino acids. Additionally, oral GSH demonstrated neuroprotective effects by alleviating the accumulation of intracerebral glutamine, down-regulating glutamine synthetase, and reducing taurine exposure. Pharmacokinetic studies suggested that AHE modeling led to significant decrease in hepatic and cerebral exposure of GSH and cysteine. However, oral GSH greatly enhanced the intrahepatic and intracortical GSH and CYS in AHE rats. Given the pivotal roles of CYS and GSH in maintaining redox homeostasis, we investigated the interplay between oxidative stress and pathogenesis/treatment of AHE. Our data revealed that GSH administration significantly relieved oxidative stress levels caused by AHE modeling via down-regulating the expression of NADPH oxidase 4 (NOX4) and NF-κB P65. Importantly, our findings further suggested that GSH administration significantly regulated the excessive endoplasmic reticulum (ER) stress caused by AHE modeling through the iNOS/ATF4/Ddit3 pathway. In summary, our study uncovered that exogenous GSH could stabilize intracerebral GSH and CYS levels to act on brain oxidative and ER stress, which have great significance for revealing the therapeutic effect of GSH on AHE and promoting its further development and clinical application.
RESUMO
INTRODUCTION: Gastric cancer is a kind of cancer with high mortality. TGIF1, as a transcription inhibitor, can inhibit the transcription of specific genes. The purpose of this study was to investigate the role of TGIF1 in gastric cancer by knocking down TGIF1. METHODS: The expression of TGIF1 was detected by qPCR and Western blotting; CCK8 assay, colony formation assay, transwell, and wound-healing assay were used to evaluate the proliferation, migration, and invasion of gastric cancer cells; cell apoptosis was analyzed by flow cytometry and Hoechst-PI double staining; cell cycle was detected by flow cytometry. Gelatinase experiment was performed to detect the expression level of MMP-2; apoptosis related proteins and AKT singling pathway were assessed by Western blotting. RESULTS: Knockdown of TGIF1 inhibited the proliferation, migration, and invasion of gastric cancer cells and promoted apoptosis. TGIF1 knockdown down-regulated the expression levels of MMP-2, Bcl2, CyclinD1, and p-Akt, and up-regulated the expression levels of Bax and Caspase3. These data suggested that knockdown of TGIF1 inhibited the development of gastric cancer via AKT signaling pathway. CONCLUSION: TGIF1 knockdown inhibited the proliferation, migration, and invasion and promoted apoptosis of gastric cancer cells via the AKT signaling pathway, suggesting that TGIF1 is considered a potential inhibitor in gastric cancer.
RESUMO
Prazosin, an α-adrenergic receptor antagonist, is used to treat mild to moderate hypertension. It has recently been discovered that α-adrenergic receptors may have potential antitumor properties. Therefore, in the present study, the effect of prazosin on human glioblastoma and the underlying mechanism were investigated. Human glioblastoma U251 and U87 cells were treated with different concentrations of prazosin, and a Cell Counting Kit-8 assay was performed to investigate the effects of prazosin on cell proliferation. Transwell migration and invasion assays were used to assess the effects of prazosin on cell migration and invasion. Prazosin-induced apoptosis in U251 and U87 cells was detected by flow cytometry, and the protein expression levels of anti-apoptotic proteins and proteins related to the PI3K/AKT/mTOR signaling pathway were detected by western blotting. The results suggested that following treatment with prazosin, the proliferation, migration and invasion of U251 and U81 cells were decreased. By contrast, U251 and U81 cell apoptosis, as well as the protein expression levels of Bax and active Caspase-3 were increased after prazosin treatment (P<0.05). Bcl-2 levels were also decreased after prazosin treatment (P<0.05). Additionally, the expression of phosphorylated (p)-AKT and p-mTOR, P70 and cyclin D1 were decreased in U251 and U81 cells following prazosin treatment (P<0.05). The present study suggested that prazosin may suppress glioblastoma progression by downregulating the activity of the PI3K/AKT/mTOR signaling pathway.
RESUMO
INTRODUCTION: Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. In the present research, we explored a new oncogene, derlin-1 (DERL1), and studied its role and mechanism in human HCC. METHODS: We assessed the expression and prognosis value of DERL1 in human HCC by using GEPIA dataset analysis and immunohistochemistry. To elucidate the specific function of DERL1, we suppressed its expression in two HCC cell lines, HuH7 and Hep3B, and overexpressed DERL1 in Hep3B cells. Cell proliferation and migration was detected by CCK8 and transwell assays. Cell flow cytometry was used to evaluate cell apoptosis. RESULTS: Our results demonstrated that DERL1 was highly expressed in HCC samples (n = 369) than in normal samples (n = 160). Similar results were obtained in 60 clinical samples that we collected from the local hospital. The high expression rate of DERL1 reached 78.3% (47/60). DERL1 overexpression samples were concentrated in patients with tumor diameters >5cm or lymph node metastases. Thus, we speculated that DERL1 operated as a tumor promotor in HCC, and its expression might be proposed as a predictor for tumor metastasis of human HCC. Interference of DERL1 markedly blocked cell proliferation and migration, and induced the apoptosis of HCC cells in vitro. Phosphorylation of Akt was significantly inhibited in cells transfected with DERL1 siRNA compared to their control cells in HuH7 and Hep3B cell lines. The opposite result was observed in the DERL1 overexpression cells. CONCLUSION: Our findings prove that DERL1 promotes tumor progression via AKT pathway and provide a new potential target for the clinical treatment and diagnosis of human HCC.
RESUMO
MARCH8 belongs to a family of membrane-associated RING-CH (MARCH) ubiquitin ligases. The functions of MARCH8 have been thoroughly investigated but its mechanism of action remains unknown. In this study, we detected the expression of MARCH8 protein in NSCLC samples and identified MARCH8 mRNA expression through a TCGA database. In addition, we analyzed the correlation between MARCH8 and the clinical characteristics of NSCLC patients and their prognosis.(www.kmplot.com). The roles of MARCH8 in proliferation, migration, and metastasis were further explored through ectopic expression analysis and western blot analysis; its mechanism of expressionwas also explored. We discovered that MARCH8 was downregulated in NSCLC tissues compared to adjacent normal lung tissues. Overexpression of MARCH8 inhibited NSCLC cell proliferation and metastasis via the PI3K and mTOR signaling pathways; this also increased apoptosis of A549 and H1299 cells. Our results indicated that MARCH8 plays crucial roles in NSCLC against carcinogenesis and progression; therefore, MARCH8 might be a predictive factor and an attractive therapeutic target for NSCLC patients.
RESUMO
BACKGROUND AND PURPOSE: Liver fibrosis is commonly associated with obesity and most obese patients develop hyperleptinaemia. The adipocytokine leptin has a unique role in the development of liver fibrosis. Activation of hepatic stellate cells (HSCs) is a key step in hepatic fibrogenesis and sterol regulatory element-binding protein-1c (SREBP-1c) can inhibit HSC activation. We have shown that leptin strongly inhibits SREBP-1c expression in rat HSCs. Hence, we aimed to clarify whether the ß-catenin pathway, the crucial negative regulator of adipocyte differentiation, mediates the effects of leptin on SREBP-1c expression in HSCs and in mouse liver fibrosis. EXPERIMENTAL APPROACH: HSCs were prepared from rats and mice. Gene expressions were analysed by real-time PCR, Western blot analysis, immunostaining and transient transfection assays. KEY RESULTS: Leptin increased ß-catenin protein but not mRNA levels in cultured HSCs. Leptin induced phosphorylation of glycogen synthase kinase-3ß at Ser(9) and subsequent stabilization of ß-catenin protein was mediated, at least in part, by ERK and p38 MAPK pathways. The leptin-induced ß-catenin pathway reduced SREBP-1c expression and activity but did not affect protein levels of key regulators controlling SREBP-1c activity, and was not involved in leptin inhibition of liver X receptor α. In a mouse model of liver injury, the ß-catenin pathway was shown to be involved in leptin-induced liver fibrosis. CONCLUSIONS AND IMPLICATIONS: The ß-catenin pathway contributes to leptin regulation of SREBP-1c expression in HSCs and leptin-induced liver fibrosis in mice. These results have potential implications for clarifying the mechanisms of liver fibrogenesis associated with elevated leptin levels.