Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ultrasound Med Biol ; 44(11): 2358-2370, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30093341

RESUMO

Use of the reference phantom method for computing acoustic attenuation and backscatter is widespread. However, clinical application of these methods has been limited by the need to acquire reference phantom data. We determined that the data acquired from 11 transducers of the same model and five clinical ultrasound systems of the same model produce equivalent estimates of reference phantom power spectra. We describe that the contribution to power spectral density variance among systems and transducers equals that from speckle variance with 59 uncorrelated echo signals. Thus, when the number of uncorrelated lines of data is small, speckle variance will dominate the power spectral density estimate variance introduced by different systems and transducers. These results suggest that, at least for this particular transducer and imaging system combination, one set of reference phantom calibration data is highly representative of the average among equivalent transducers and systems that are in good working order.


Assuntos
Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Transdutores , Ultrassonografia/métodos , Acústica , Reprodutibilidade dos Testes , Ultrassom
2.
J Am Soc Echocardiogr ; 18(3): 244-51, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15746714

RESUMO

We have developed a novel, semiautomated carotid intima-media thickness (CIMT) border detection program (AUTO) and evaluated its measurement reproducibility and accuracy. Images from 6 carotid segments were acquired in 50 subjects, for a total of 300 segments. Mean and maximum CIMT values were measured blindly at a reference (REF) lab and in duplicate by experienced (EXP) and novice (NOV) readers using manual (MAN) and AUTO methods. Coefficients of variation for AUTO measurements of mean (3.2%) and maximum (4.1%) CIMT were low, and the AUTO method improved the NOV reader's reproducibility. Compared with the REF lab, mean (0.012 +/- 0.006 mm) and maximum (0.144 +/- 0.006 mm) CIMT biases were small and equivalent to those of the REF lab ( P < .001). The AUTO method shortened reading times by 35% to 46% ( P < .001). We conclude that our novel AUTO CIMT measurement program improved reproducibility and was accurate. Compared with MAN tracing, the AUTO method agreed better with the REF lab and decreased reading time.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva/diagnóstico por imagem , Túnica Íntima/diagnóstico por imagem , Túnica Média/diagnóstico por imagem , Ultrassonografia/métodos , Adulto , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Ultrassonografia/instrumentação
3.
J Ther Ultrasound ; 3: 17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413296

RESUMO

BACKGROUND: Deep Bleeder Acoustic Coagulation (DBAC) is an ultrasound image-guided high-intensity focused ultrasound (HIFU) method proposed to automatically detect and localize (D&L) and treat deep, bleeding, combat wounds in the limbs of soldiers. A prototype DBAC system consisting of an applicator and control unit was developed for testing on animals. To enhance control, and thus safety, of the ultimate human DBAC autonomous product system, a thermal coagulation strategy that minimized cavitation, boiling, and non-linear behaviors was used. MATERIAL AND METHODS: The in vivo DBAC applicator design had four therapy tiles (Tx) and two 3D (volume) imaging probes (Ix) and was configured to be compatible with a porcine limb bleeder model developed in this research. The DBAC applicator was evaluated under quantitative test conditions (e.g., bleeder depths, flow rates, treatment time limits, and dose exposure time limits) in an in vivo study (final exam) comprising 12 bleeder treatments in three swine. To quantify blood flow rates, the "bleeder" targets were intact arterial branches, i.e., the superficial femoral artery (SFA) and a deep femoral artery (DFA). D&L identified, characterized, and targeted bleeders. The therapy sequence selected Tx arrays and determined the acoustic power and Tx beam steering, focus, and scan patterns. The user interface commands consisted of two buttons: "Start D&L" and "Start Therapy." Targeting accuracy was assessed by necropsy and histologic exams and efficacy (vessel coagulative occlusion) by angiography and histology. RESULTS: The D&L process (Part I article, J Ther Ultrasound, 2015 (this issue)) executed fully in all cases in under 5 min and targeting evaluation showed 11 of 12 thermal lesions centered on the correct vessel subsection, with minimal damage to adjacent structures. The automated therapy sequence also executed properly, with select manual steps. Because the dose exposure time limit (t dose ≤ 30 s) was associated with nonefficacious treatment, 60-s dosing and dual-dosing was also pursued. Thrombogenic evidence (blood clotting) and collagen denaturation (vessel shrinkage) were found in necropsy and histologically in all targeted SFAs. Acute SFA reductions in blood flow (20-30 %) were achieved in one subject, and one partial and one complete vessel occlusion were confirmed angiographically. The complete occlusion case was achieved with a dual dose (90 s total exposure) with focal intensity ≈500 W/cm(2) (spatial average, temporal average). CONCLUSIONS: While not meeting all in vivo objectives, the overall performance of the DBAC applicator was positive. In particular, D&L automation workflow was verified during each of the tests, with processing times well under specified (10 min) limits, and all bleeder branches were detected and localized. Further, gross necropsy and tissue examination confirmed that the HIFU thermal lesions were coincident with the target vessel locations in over 90 % of the multi-array dosing treatments. The SFA/DFA bleeder models selected, and the protocols used, were the most suitable practical model options for the given DBAC anatomical and bleeder requirements. The animal models were imperfect in some challenging aspects, including requiring tissue-mimicking material (TMM) standoffs to achieve deep target depths, thereby introducing device-tissue motion, with resultant imaging artifacts. The model "bleeders" involved intact vessels, which are subject to less efficient heating and coagulation cascade behaviors than true puncture injuries.

4.
J Ther Ultrasound ; 3: 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388994

RESUMO

BACKGROUND: Bleeding from limb injuries is a leading cause of death on the battlefield, with deep wounds being least accessible. High-intensity focused ultrasound (HIFU) has been shown capable of coagulation of bleeding (cautery). This paper describes the development and refereed in vitro evaluation of an ultrasound (US) research prototype deep bleeder acoustic coagulation (DBAC) cuff system for evaluating the potential of DBAC in the battlefield. The device had to meet quantitative performance metrics on automated operation, therapeutic heating, bleeder detection, targeting accuracy, operational time limits, and cuff weight over a range of limb sizes and bleeder depths. These metrics drove innovative approaches in image segmentation, bleeder detection, therapy transducers, beam targeting, and dose monitoring. A companion (Part II) paper discusses the in vivo performance testing of an animal-specific DBAC system. MATERIALS AND METHODS: The cuff system employed 3D US imaging probes ("Ix") for detection and localization (D&L) and targeting, with the bleeders being identified by automated spectral Doppler analysis of flow waveforms. Unique high-element-count therapeutic arrays ("Tx") were developed, with the final cuff prototype having 21 Tx's and 6 Ix's. Spatial registration of Ix's and Tx's was done with a combination of image-registration, acoustic time-of-flight measurement, and tracking of the cuff shape via a fiber optic sensor. Acoustic radiation force impulse (ARFI) imaging or thermal strain imaging (TSI) at low-power doses were used to track the HIFU foci in closed-loop targeting. Recurrent neural network (RNN) acoustic thermometry guided closed-loop dosing. The cuff was tested on three phantom "limb" sizes: diameters = 25, 15, and 7.5 cm, with bleeder depths from 3.75 to 12.5 cm. "Integrated Phantoms" (IntP) were used for assessing D&L, closed-loop targeting, and closed-loop dosing. IntPs had surrogate arteries and bleeders, with blood-mimicking fluids moved by a pulsatile pump, and thermocouples (TCs) on the bleeders. Acoustic dosing was developed and tested using "HIFU Phantoms" having precisely located TCs, with end-of-dose target ∆T = 33-58 °C, and skin temperature ∆T ≤ 20 °C, being required. RESULTS: Most DBAC cuff performance requirements were met, including cuff weight, power delivery, targeting accuracy, skin temperature limit, and autonomous operation. The automated D&L completed in 9 of 15 tests (65 %), detecting the smallest (0.6 mm) bleeders, but it had difficulty with the lowest flow (3 cm/sec) bleeders, and in localizing bleeders in the smallest (7.5 cm) phantoms. D&L did not complete within the 9-min limit (results ranged 10-21 min). Closed-loop targeting converged in 20 of 31 tests (71 %), and closed-loop dosing power shut-off at preset ∆Ts was operational. SUMMARY AND CONCLUSION: The main performance objectives of the prototype DBAC cuff were met, however the designs required a number of challenging new technology developments. The novel Tx arrays exhibited high power with significant beam steering and focusing flexibility, while their integrated electronics enabled the required compact, lightweight configurability and simplified driving controls and cable/connector architecture. The compounded 3D imaging, combined with sophisticated software algorithms, enabled automated D&L and initial targeting and closed-loop targeting feedback via TSI. The development of RNN acoustic thermometry made possible feedback-controlled dosing. The lightweight architecture required significant design and fabrication effort to meet mechanical functionalities. Although not all target specifications were met, future engineering solutions addressing these performance deficiencies are proposed. Lastly, the program required very complex limb test phantoms and, while very challenging to develop, they performed well.

5.
Ultrasound Med Biol ; 39(12): 2233-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24063961

RESUMO

This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/fisiopatologia , Técnicas de Imagem por Elasticidade/métodos , Palpação/métodos , Ultrassonografia Mamária/métodos , Interface Usuário-Computador , Adulto , Diagnóstico Diferencial , Módulo de Elasticidade , Feminino , Humanos , Pessoa de Meia-Idade , Estimulação Física/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência ao Cisalhamento , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA