Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(9): 3857-3866, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786524

RESUMO

Physically cross-linked supramolecular polymers composed of a hydrophobic poly(epichlorohydrin) backbone with hydrogen-bonding cytosine pendant groups and hydrophilic poly(ethylene glycol) (PEG) side chains spontaneously self-assemble to form highly controlled, reversible supramolecular polymer networks (SPNs) because of cytosine-induced transient cross-linking. Owing to their simple synthesis procedure and ease of tuning the cytosine and PEG contents to obtain varying degrees of SPNs within the polymer matrix, the resulting polymers exhibit a unique surface morphology, wide-range tunable mechanical/rheological properties, and surface wettability behavior as well as high biocompatibility and structural stability in normal cell- and red blood cell-rich media. Cell culture experiments and fluorescent images clearly demonstrated that the incorporation of cytosine and PEG units into the SPN-based polymer substrates efficiently promoted cellular attachment and accelerated cell growth. Importantly, scratch wound-healing assays revealed that the cytosine-functionalized substrates promoted rapid cell spreading and migration into the damaged cellular surface and accelerated the wound-healing rate. These results indicate that the presence of cytosine units within polymer substrates is crucial for the construction of multifunctional tissue engineering scaffolds with tailorable physical characteristics in order to promote cell adhesion, proliferation, and differentiation.


Assuntos
Citosina , Polietilenoglicóis , Adesão Celular , Polímeros , Cicatrização
2.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630069

RESUMO

The development of stimuli-responsive supramolecular micelles with high drug-loading contents that specifically induce significant levels of apoptosis in cancer cells remains challenging. Herein, we report photosensitive uracil-functionalized supramolecular micelles that spontaneously form via self-assembly in aqueous solution, exhibit sensitive photo-responsive behavior, and effectively encapsulate anticancer drugs at high drug-loading contents. Cellular uptake analysis and double-staining flow cytometric assays confirmed the presence of photo-dimerized uracil groups within the irradiated micelles remarkably enhanced endocytic uptake of the micelles by cancer cells and subsequently led to higher levels of apoptotic cell death, and thus improved the therapeutic effect in vitro. Thus, photo-dimerized uracil-functionalized supramolecular micelles may potentially represent an intelligent nanovehicle to improve the safety, efficacy, and applicability of cancer chemotherapy, and could also enable the development of nucleobase-based supramolecular micelles for multifunctional biomaterials and novel biomedical applications.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Micelas , Apoptose , Dimerização , Endocitose , Uracila/química
3.
J Colloid Interface Sci ; 665: 329-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531278

RESUMO

We demonstrate that cytosine moieties within physically cross-linked supramolecular polymers not only manipulate drug delivery and release, but also confer specific targeting of cancer cells to effectively enhance the safety and efficacy of chemotherapy-and thus hold significant potential as a new perspective for development of drug delivery systems. Herein, we successfully developed physically cross-linked supramolecular polymers (PECH-PEG-Cy) comprised of hydrogen-bonding cytosine pendant groups, hydrophilic poly(ethylene glycol) side chains, and a hydrophobic poly(epichlorohydrin) main chain. The polymers spontaneously self-assemble into a reversibly hydrogen-bonded network structure induced by cytosine and directly form spherical nanogels in aqueous solution. Nanogels with a high hydrogen-bond network density (i.e., a higher content of cytosine moieties) exhibit outstanding long-term structural stability in cell culture substrates containing serum, whereas nanogels with a relatively low hydrogen-bond network density cannot preserve their structural integrity. The nanogels also exhibit numerous unique physicochemical characteristics in aqueous solution, such as a desirable spherical size, high biocompatibility with normal and cancer cells, excellent drug encapsulation capacity, and controlled pH-responsive drug release properties. More importantly, in vitro experiments conclusively indicate the drug-loaded PECH-PEG-Cy nanogels can selectively induce cancer cell-specific apoptosis and cell death via cytosine receptor-mediated endocytosis, without significantly harming normal cells. In contrast, control drug-loaded PECH-PEG nanogels, which lack cytosine moieties in their structure, can only induce cell death in cancer cells through non-specific pathways, which significantly inhibits the induction of apoptosis. This work clearly demonstrates that the cytosine moieties in PECH-PEG-Cy nanogels confer selective affinity for the surface of cancer cells, which enhances their targeted cellular uptake, cytotoxicity, and subsequent induction of programmed cell death in cancer cells.


Assuntos
Neoplasias , Polímeros , Nanogéis , Polímeros/química , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Apoptose , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico
4.
Macromol Biosci ; 20(12): e2000233, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32869957

RESUMO

Functional supramolecular micelles containing self-complementary multiple hydrogen bonding adenine groups (A-PPG) can spontaneously self-assemble into stable nanosized micelles in aqueous solution. These micelles can be used to selectively deliver anticancer drugs to cancer cells and effectively promote tumor cell death via apoptosis, without harming normal cells. The drug-loaded micelles exhibit tunable drug-loading capacity and rapid pH-triggered drug release under acidic conditions, as well as a high drug-entrapment stability in serum-rich media due to the reversible hydrogen-bonded adenine-adenine interactions within the micellar interior; these properties are critical to achieving effective chemotherapeutic drug delivery and controlled drug release. In vitro assays show that the drug-loaded micelles exert significant cytotoxic effects on cancer cells, with minimal effects on normal cells under physiological conditions. Cytotoxicity assays using A-PPG micelles loaded with different anticancer drugs confirm these effects. Importantly, cellular internalization and flow cytometric analyses demonstrate that the adenine moieties within A-PPG micelles significantly increase selective endocytic uptake of the supramolecular micelles by cancer cells, which in turn induce apoptotic cell death and substantially enhance the response to chemotherapy. Thus, A-PPG micelles can improve the safety and efficacy of cancer chemotherapy.


Assuntos
Adenina/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Adenina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Humanos , Micelas , Polímeros/química , Polímeros/farmacologia
5.
ACS Biomater Sci Eng ; 6(7): 4096-4105, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463316

RESUMO

pH-Responsive hydrogen-bonded supramolecular micelles, composed of a water-soluble poly(ethylene glycol) polymer with two terminal sextuple hydrogen bonding groups, can spontaneously organize in aqueous media to give well-defined, uniformly sized spherical micelles. The supramolecular micelles exhibit a number of unique physical characteristics, such as interesting amphiphilic behavior, desirable micellar size and nanospherical morphology, excellent biocompatibility, tailorable drug-loading capacities, and high structural stability in media containing serum or red blood cells. In addition, the drug release kinetics of drug-loaded micelles can be easily manipulated to achieve the desired release profile by regulating the environmental pH, thus these micelles are highly attractive candidates as an intelligent drug carrier system for cancer therapy. Cytotoxicity assays showed that the drug-loaded micelles induced pH-dependent intracellular drug release and exerted strong antiproliferative and cytotoxic activities toward cancer cells. Importantly, cellular uptake and flow cytometric analyses confirmed that a mildly acidic intracellular environment significantly increased cellular internalization of the drug-loaded micelles and subsequent drug release in the cytoplasm and nucleus of cancer cells, resulting in more effective induction of apoptotic cell death. Thus, this system may provide an efficient route toward achieving the fundamental properties and practical realization of pH-sensitive drug-delivery systems for chemotherapy.


Assuntos
Micelas , Neoplasias , Portadores de Fármacos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Polímeros
6.
ACS Macro Lett ; 8(12): 1541-1545, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619401

RESUMO

Self-complementary supramolecular polymers (SCSPs), an efficient combination of sextuple hydrogen-bonded dimer moieties and a temperature-responsive polymer, can promote the construction of stable supramolecular polymer networks (SPNs) that enable the formation of well-defined nanospherical micelles in aliphatic alcohols. These micelles undergo tailorable, thermoresponsive phase transitions at the upper critical solution temperature (UCST) and have a desirable spherical morphology and size ranges, thus, are potential candidates for applications in interfacial engineering and biomedical fields. Moreover, concentration-dependent UCST measurements and variable-temperature experiments indicated that the hydrogen-bonded complexes are strong enough to form stable intermolecularly entangled SPNs within the micelles, even above the UCST or at low concentrations in solution, which enables the micelles to undergo reversible temperature-dependent conformational changes between insoluble and soluble globules without significant changes in particle size or size distribution. Thus, this newly discovered system offers a new approach toward the development of next-generation temperature-responsive SCSPs with the desired structural stability that undergoes UCST transitions.

7.
J Virol Methods ; 243: 80-82, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28185831

RESUMO

In this study, a specific and sensitive method for simultaneous detection of human astrovirus, human rotavirus, norovirus, sapovirus and enteric adenovirus associated with acute enteritis was developed, based on the specific dual priming oligonucleotide (DPO) system and the sensitive high-performance liquid chromatography (HPLC) analysis. The DPO system-based multiplex reverse transcription-polymerase chain reaction (RT-PCR) combined with HPLC assay was more sensitive than agarose gel electrophoresis analysis and real-time SYBR Green PCR assay, and showed a specificity of 100% and sensitivity of 96%-100%. The high sensitivity and specificity of the assay indicates its great potential to be a useful tool for the accurate diagnosis of enteric virus infections.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Enterite/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Viroses/diagnóstico , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA