Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sensors (Basel) ; 23(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37766060

RESUMO

Routine assessments of gait and balance have been recognized as an effective approach for preventing falls by issuing early warnings and implementing appropriate interventions. However, current limited public healthcare resources cannot meet the demand for continuous monitoring of deteriorations in gait and balance. The objective of this study was to develop and evaluate the feasibility of a prototype surrogate system driven by sensor technology and multi-sourced heterogeneous data analytics, for gait and balance assessment and monitoring. The system was designed to analyze users' multi-mode data streams collected via inertial sensors and a depth camera while performing a 3-m timed up and go test, a five-times-sit-to-stand test, and a Romberg test, for predicting scores on clinical measurements by physiotherapists. Generalized regression of sensor data was conducted to build prediction models for gait and balance estimations. Demographic correlations with user acceptance behaviors were analyzed using ordinal logistic regression. Forty-four older adults (38 females) were recruited in this pilot study (mean age = 78.5 years, standard deviation [SD] = 6.2 years). The participants perceived that using the system for their gait and balance monitoring was a good idea (mean = 5.45, SD = 0.76) and easy (mean = 4.95, SD = 1.09), and that the system is useful in improving their health (mean = 5.32, SD = 0.83), is trustworthy (mean = 5.04, SD = 0.88), and has a good fit between task and technology (mean = 4.97, SD = 0.84). In general, the participants showed a positive intention to use the proposed system in their gait and balance management (mean = 5.22, SD = 1.10). Demographic correlations with user acceptance are discussed. This study provides preliminary evidence supporting the feasibility of using a sensor-technology-augmented system to manage the gait and balance of community-dwelling older adults. The intervention is validated as being acceptable, viable, and valuable.


Assuntos
Vida Independente , Equilíbrio Postural , Feminino , Humanos , Idoso , Hong Kong , Estudos de Viabilidade , Projetos Piloto , Estudos de Tempo e Movimento , Marcha , Tecnologia
2.
BMC Med Inform Decis Mak ; 22(1): 209, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933348

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a common mental illness, characterized by persistent depression, sadness, despair, etc., troubling people's daily life and work seriously. METHODS: In this work, we present a novel automatic MDD detection framework based on EEG signals. First of all, we derive highly MDD-correlated features, calculating the ratio of extracted features from EEG signals at frequency bands between [Formula: see text] and [Formula: see text]. Then, a two-stage feature selection method named PAR is presented with the sequential combination of Pearson correlation coefficient (PCC) and recursive feature elimination (RFE), where the advantages lie in minimizing the feature searching space. Finally, we employ widely used machine learning methods of support vector machine (SVM), logistic regression (LR), and linear regression (LNR) for MDD detection with the merit of feature interpretability. RESULTS: Experiment results show that our proposed MDD detection framework achieves competitive results. The accuracy and [Formula: see text] score are up to 0.9895 and 0.9846, respectively. Meanwhile, the regression determination coefficient [Formula: see text] for MDD severity assessment is up to 0.9479. Compared with existing MDD detection methods with the best accuracy of 0.9840 and [Formula: see text] score of 0.97, our proposed framework achieves the state-of-the-art MDD detection performance. CONCLUSIONS: Development of this MDD detection framework can be potentially deployed into a medical system to aid physicians to screen out MDD patients.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Maior/diagnóstico , Eletroencefalografia/métodos , Humanos , Modelos Logísticos , Aprendizado de Máquina , Máquina de Vetores de Suporte
3.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668778

RESUMO

Estimating blood pressure via combination analysis with electrocardiogram and photoplethysmography signals has attracted growing interest in continuous monitoring patients' health conditions. However, most wearable/portal monitoring devices generally acquire only one kind of physiological signals due to the consideration of energy cost, device weight and size, etc. In this study, a novel adaptive weight learning-based multitask deep learning framework based on single lead electrocardiogram signals is proposed for continuous blood pressure estimation. Specifically, the proposed method utilizes a 2-layer bidirectional long short-term memory network as the sharing layer, followed by three identical architectures of 2-layer fully connected networks for task-specific blood pressure estimation. To learn the importance of task-specific losses automatically, an adaptive weight learning scheme based on the trend of validation loss is proposed. Extensive experiment results on Physionet Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II waveform database demonstrate that the proposed method using electrocardiogram signals obtains estimating performance of 0.12±10.83 mmHg, 0.13±5.90 mmHg, and 0.08±6.47 mmHg for systolic blood pressure, diastolic blood pressure, and mean arterial pressure, respectively. It can meet the requirements of the British Hypertension Society standard and US Association of Advancement of Medical Instrumentation standard with a considerable margin. Combined with a wearable/portal electrocardiogram device, the proposed model can be deployed to a healthcare system to provide a long-term continuous blood pressure monitoring service, which would help to reduce the incidence of malignant complications to hypertension.


Assuntos
Determinação da Pressão Arterial , Hipertensão , Pressão Sanguínea , Eletrocardiografia , Humanos , Hipertensão/diagnóstico , Fotopletismografia
4.
BMC Med Inform Decis Mak ; 19(1): 285, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888608

RESUMO

BACKGROUND: The accelerated growth of elderly population is creating a heavy burden to the healthcare system in many developed countries and regions. Electrocardiogram (ECG) analysis has been recognized as effective approach to cardiovascular disease diagnosis and widely utilized for monitoring personalized health conditions. METHOD: In this study, we present a novel approach to forecasting one-day-forward wellness conditions for community-dwelling elderly by analyzing single lead short ECG signals acquired from a station-based monitoring device. More specifically, exponentially weighted moving-average (EWMA) method is employed to eliminate the high-frequency noise from original signals at first. Then, Fisher-Yates normalization approach is used to adjust the self-evaluated wellness score distribution since the scores among different individuals are skewed. Finally, both deep learning-based and traditional machine learning-based methods are utilized for building wellness forecasting models. RESULTS: The experiment results show that the deep learning-based methods achieve the best fitted forecasting performance, where the forecasting accuracy and F value are 93.21% and 91.98% respectively. The deep learning-based methods, with the merit of non-hand-crafted engineering, have superior wellness forecasting performance towards the competitive traditional machine learning-based methods. CONCLUSION: The developed approach in this paper is effective in wellness forecasting for community-dwelling elderly, which can provide insights in terms of implementing a cost-effective approach to informing healthcare provider about health conditions of elderly in advance and taking timely interventions to reduce the risk of malignant events.


Assuntos
Eletrocardiografia/métodos , Nível de Saúde , Aprendizado de Máquina , Modelos Teóricos , Idoso , Aprendizado Profundo , Previsões , Humanos , Vida Independente
5.
Biomed Eng Online ; 17(1): 56, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724227

RESUMO

BACKGROUND: Long-term electrocardiogram (ECG) is one of the important diagnostic assistant approaches in capturing intermittent cardiac arrhythmias. Combination of miniaturized wearable holters and healthcare platforms enable people to have their cardiac condition monitored at home. The high computational burden created by concurrent processing of numerous holter data poses a serious challenge to the healthcare platform. An alternative solution is to shift the analysis tasks from healthcare platforms to the mobile computing devices. However, long-term ECG data processing is quite time consuming due to the limited computation power of the mobile central unit processor (CPU). METHODS: This paper aimed to propose a novel parallel automatic ECG analysis algorithm which exploited the mobile graphics processing unit (GPU) to reduce the response time for processing long-term ECG data. By studying the architecture of the sequential automatic ECG analysis algorithm, we parallelized the time-consuming parts and reorganized the entire pipeline in the parallel algorithm to fully utilize the heterogeneous computing resources of CPU and GPU. RESULTS: The experimental results showed that the average executing time of the proposed algorithm on a clinical long-term ECG dataset (duration 23.0 ± 1.0 h per signal) is 1.215 ± 0.140 s, which achieved an average speedup of 5.81 ± 0.39× without compromising analysis accuracy, comparing with the sequential algorithm. Meanwhile, the battery energy consumption of the automatic ECG analysis algorithm was reduced by 64.16%. Excluding energy consumption from data loading, 79.44% of the energy consumption could be saved, which alleviated the problem of limited battery working hours for mobile devices. CONCLUSION: The reduction of response time and battery energy consumption in ECG analysis not only bring better quality of experience to holter users, but also make it possible to use mobile devices as ECG terminals for healthcare professions such as physicians and health advisers, enabling them to inspect patient ECG recordings onsite efficiently without the need of a high-quality wide-area network environment.


Assuntos
Algoritmos , Gráficos por Computador , Eletrocardiografia , Processamento de Sinais Assistido por Computador , Automação , Humanos
6.
Physiol Meas ; 45(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237197

RESUMO

Objective.Explore a network architecture that can efficiently perform single-lead electrocardiogram (ECG) sleep apnea (SA) detection by utilizing the beneficial information of extended ECG segments and reducing the impact of their noisy information.Approach.We propose an effective deep-shallow fusion network (EDSFnet). The deeper residual network is used to extract high-level features with stronger semantics and less noise from the original ECG segments. The shallower convolutional neural network is used to extract lower-level features with higher resolution containing more detailed neighborhood information from the extended ECG segments. These two types of features are then fused using Effective Channel Attention, implementing automatic weight assignment to take advantage of their complementary nature.Main results.The performance of EDSFnet is evaluated on the Apnea-ECG dataset and the FAH-ECG dataset. In the Apnea-ECG dataset with 35 subjects as the training set and 35 subjects as the test set, the accuracy of EDSFnet was 92.6% and 100% for per-segment and per-recording test, respectively. In the FAH-ECG dataset with 348 subjects as the training set and 88 subjects as the test set, the accuracy of EDSFnet was 89.0% and 93.2% for per-segment and per-recording test, respectively. EDSFnet has achieved state-of-the-art results in both experiments using the publicly available Apnea-ECG dataset and subject-independent experiments using the FAH-ECG clinical dataset.Significance.The success of EDSFnet in handling SA detection underlines its robustness and adaptability. By achieving superior results across different datasets, EDSFnet offers promise in advancing the cost-effective and efficient detection of SA through single-lead ECG, reducing the burden on patients and healthcare systems alike.


Assuntos
Processamento de Sinais Assistido por Computador , Síndromes da Apneia do Sono , Humanos , Síndromes da Apneia do Sono/diagnóstico , Redes Neurais de Computação , Eletrocardiografia/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38865230

RESUMO

Sleep staging is imperative for evaluating sleep quality and diagnosing sleep disorders. Extant sleep staging methods with fusing multiple data-views of physiological signals have achieved promising results. However, they remain neglectful of the relationship among different data-views at different feature scales with view position-alignment. To address this, we propose a novel cross-view alignment network, termed cVAN, utilising scale-aware attention for sleep stages classification. Specifically, cVAN principally incorporates two sub-networks of a residual- like network which learn spectral information from time-frequency images and a transformer- like network which learns corresponding temporal information. The prime advantage of cVAN is to adaptively align the learned feature scales among the different data-views of physiological signals with a scale-aware attention by reorganizing feature maps. Extensive experiments on three public sleep datasets demonstrate that cVAN can achieve a new state-of-the-art result, which is superior to existing counterparts. The source code for cVAN is accessible at the URL (https://github.com/Fibonaccirabbit/cVAN).

8.
Sleep Med Rev ; 74: 101897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306788

RESUMO

Over the past few decades, researchers have attempted to simplify and accelerate the process of sleep stage classification through various approaches; however, only a few such approaches have gained widespread acceptance. Artificial intelligence technology, particularly deep learning, is promising for earning the trust of the sleep medicine community in automated sleep-staging systems, thus facilitating its application in clinical practice and integration into daily life. We aimed to comprehensively review the latest methods that are applying deep learning for enhancing sleep staging efficiency and accuracy. Starting from the requisite "data" for constructing deep learning algorithms, we elucidated the current landscape of this domain and summarized the fundamental modeling process, encompassing signal selection, data pre-processing, model architecture, classification tasks, and performance metrics. Furthermore, we reviewed the applications of automated sleep staging in scenarios such as sleep-disorder screening, diagnostic procedures, and health monitoring and management. Finally, we conducted an in-depth analysis and discussion of the challenges and future in intelligent sleep staging, particularly focusing on large-scale sleep datasets, interdisciplinary collaborations, and human-computer interactions.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Eletroencefalografia/métodos , Sono , Algoritmos , Fases do Sono
9.
Artigo em Inglês | MEDLINE | ID: mdl-37216250

RESUMO

Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring. The source code is released at https://github.com/Bettycxh/Bottleneck-Attention-Based-Fusion-Network-for-Sleep-Apnea-Detection.

10.
Neural Netw ; 162: 571-580, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003136

RESUMO

Sleep apnea (SA) is a common sleep-related breathing disorder, which would lead to damage of multiple systemic organs or even sudden death. In clinical practice, portable device is an important tool to monitor sleep conditions and detect SA events by using physiological signals. However, SA detection performance is still limited due to physiological signals with time-variability and complexity. In this paper, we focus on SA detection with single lead ECG signals, which can be easily collected by a portable device. Under this context, we propose a restricted attention fusion network called RAFNet for sleep apnea detection. Specifically, RR intervals (RRI) and R-peak amplitudes (Rpeak) are generated from ECG signals and divided into one-minute-long segments. To alleviate the problem of insufficient feature information of the target segment, we combine the target segment with two pre- and post-adjacent segments in sequence, (i.e. a five-minute-long segment), as the input. Meanwhile, by leveraging the target segment as the query vector, we propose a new restricted attention mechanism with cascaded morphological and temporal attentions, which can effectively learn the feature information and depress redundant feature information from the adjacent segments with adaptive assigning weight importance. To further improve the SA detection performance, the target and adjacent segment features are fused together with the channel-wise stacking scheme. Experiment results on the public Apnea-ECG dataset and the real clinical FAH-ECG dataset with sleep apnea annotations show that the RAFNet greatly improves SA detection performance and achieves competitive results, which are superior to those achieved by the state-of-the-art baselines.


Assuntos
Algoritmos , Síndromes da Apneia do Sono , Humanos , Processamento de Sinais Assistido por Computador , Síndromes da Apneia do Sono/diagnóstico , Respiração , Eletrocardiografia/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38082997

RESUMO

Sleep apnea (SA) is a common breathing disease, with clinical manifestations of sleep snoring at night with apnea and daytime sleepiness. It could lead to ischemic heart disease, stroke, or even sudden death. SpO2 signal is highly related to SA, and many automatic SA detection methods have been proposed. However, extant work focuses on small datasets with relatively few subjects (less than 100) and is unaware of SA syndromes occurring about 5 seconds prior to the SpO2 change. This study proposes an automatic SA detector called DSCNN using a single-lead SpO2 signal with a dual-scale convolutional neural network. To solve the time-delayed problem of SpO2 changes, we enlarge the target SpO2 segment information by combining its subsequent segment information. To utilize neighbouring segments information and further facilitate the SA detection performance, a dual-scale neural network with the fusing information of the prolonged target segment and its two surrounding segments is proposed. Three datasets from multiple centres are employed to verify the generic performance of DSCNN. Here, we must point out that we use two datasets as external datasets, and one of them is collected from the First Affiliated Hospital of Sun Yat-sen University with a large sample size (450 subjects). Extensive experiment results show that DSCNN can achieve promising results which are superior to the existing state-of-the-art methods.


Assuntos
Síndromes da Apneia do Sono , Acidente Vascular Cerebral , Humanos , Síndromes da Apneia do Sono/diagnóstico , Redes Neurais de Computação , Sono , Ronco
12.
J Clin Sleep Med ; 19(6): 1017-1025, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36734174

RESUMO

STUDY OBJECTIVES: We evaluated the validity of a squeeze-and-excitation and multiscaled fusion network (SE-MSCNN) using single-lead electrocardiogram (ECG) signals for obstructive sleep apnea detection and classification. METHODS: Overnight polysomnographic data from 436 participants at the Sleep Center of the First Affiliated Hospital of Sun Yat-sen University were used to generate a new FAH-ECG dataset comprising 260, 88, and 88 single-lead ECG signal recordings for training, validation, and testing, respectively. The SE-MSCNN was employed for detection of apnea-hypopnea events from the acquired ECG segments. Sensitivity, specificity, accuracy, and F1 scores were assigned to assess algorithm performance. We also used the SE-MSCNN to estimate the apnea-hypopnea index, classify obstructive sleep apnea severity, and compare the agreement between 2 sleep technicians. RESULTS: The SE-MSCNN's accuracy, sensitivity, specificity, and F1 score on the FAH-ECG dataset were 86.6%, 83.3%, 89.1%, and 0.843, respectively. Although slightly inferior to previously reported results using public datasets, it is superior to state-of-the-art open-source models. Furthermore, the SE-MSCNN had good agreement with manual scoring, such that the Spearman's correlations for the apnea-hypopnea index between the SE-MSCNN and 2 technicians were 0.93 and 0.94, respectively. Cohen's kappa scores in classifying the SE-MSCNN and the 2 sleep technicians were 0.72 and 0.78, respectively. CONCLUSIONS: In this study, we validated the use of the SE-MSCNN in a clinical environment, and despite some limitations the network appeared to meet the performance standards for generalizability. Therefore, updating algorithms based on single-lead ECG signals can facilitate the development of novel wearable devices for efficient obstructive sleep apnea screening. CITATION: Yue H, Li P, Li Y, et al. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis. J Clin Sleep Med. 2023;19(6):1017-1025.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Polissonografia/métodos , Apneia Obstrutiva do Sono/diagnóstico , Sono , Síndromes da Apneia do Sono/diagnóstico , Eletrocardiografia/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-36129857

RESUMO

Sleep stage classification is of great importance in human health monitoring and disease diagnosing. Clinically, visual-inspected classifying sleep into different stages is quite time consuming and highly relies on the expertise of sleep specialists. Many automated models for sleep stage classification have been proposed in previous studies but their performances still exist a gap to the real clinical application. In this work, we propose a novel multi-view fusion network named MVF-SleepNet based on multi-modal physiological signals of electroencephalography (EEG), electrocardiography (ECG), electrooculography (EOG), and electromyography (EMG). To capture the relationship representation among multi-modal physiological signals, we construct two views of Time-frequency images (TF images) and Graph-learned graphs (GL graphs). To learn the spectral-temporal representation from sequentially timed TF images, the combination of VGG-16 and GRU networks is utilized. To learn the spatial-temporal representation from sequentially timed GL graphs, the combination of Chebyshev graph convolution and temporal convolution networks is employed. Fusing the spectral-temporal representation and spatial-temporal representation can further boost the performance of sleep stage classification. A large number of experiment results on the publicly available datasets of ISRUC-S1 and ISRUC-S3 show that the MVF-SleepNet achieves overall accuracy of 0.821, F1 score of 0.802 and Kappa of 0.768 on ISRUC-S1 dataset, and accuracy of 0.841, F1 score of 0.828 and Kappa of 0.795 on ISRUC-S3 dataset. The MVF-SleepNet achieves competitive results on both datasets of ISRUC-S1 and ISRUC-S3 for sleep stage classification compared to the state-of-the-art baselines. The source code of MVF-SleepNet is available on Github (https://github.com/YJPai65/MVF-SleepNet).

14.
Artigo em Inglês | MEDLINE | ID: mdl-35280515

RESUMO

Depression is considered to be a major public health problem with significant implications for individuals and society. Patients with depression can be with complementary therapies such as acupuncture. Predicting the prognostic effects of acupuncture has a big significance in helping physicians make early interventions for patients with depression and avoid malignant events. In this work, a novel framework of predicting prognostic effects of acupuncture for depression based on electroencephalogram (EEG) recordings is presented. Specifically, EEG, as a widely used measurement to evaluate the therapeutic effects of acupuncture, is utilized for predicting prognostic effects of acupuncture. Max-relevance and min-redundancy (mRMR), with merits of removing redundant information among selected features and remaining high relevance between selected features and response variable, is employed to select important lead-rhythm features extracted from EEG recordings. Then, according to the subject Hamilton Depression Rating Scale (HAMD) scores before and after acupuncture for eight weeks, the reduction rate of HAMD score is calculated as a measure of the prognostic effects of acupuncture. Finally, five widely used machine learning methods are utilized for building the predicting models of prognostic effects of acupuncture for depression. Experimental results show that nonlinear machine learning methods have better performance than linear ones on predicting prognostic effects of acupuncture using EEG recordings. Especially, the support vector machine with Gaussian kernel (SVM-RBF) can achieve the best and most stable performance using the mRMR with both evaluating criteria of FCD and FCQ for feature selection. Both mRMR-FCD and mRMR-FCQ obtain the same best performance, where the accuracy and F 1 score are 84.61% and 86.67%, respectively. Moreover, lead-rhythm features selected by mRMR-FCD and mRMR-FCQ are analyzed. The top seven selected lead-rhythm features have much higher mRMR evaluating scores, which guarantee the good predicting performance for machine learning methods to some degree. The presented framework in this work is effective in predicting the prognostic effects of acupuncture for depression. It can be integrated into an intelligent medical system and provide information on the prognostic effects of acupuncture for physicians. Informed prognostic effects of acupuncture for depression in advance and taking interventions can greatly reduce the risk of malignant events for patients with mental disorders.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36078847

RESUMO

The accelerated growth of elderly populations in many countries and regions worldwide is creating a major burden to the healthcare system. Intelligent approaches for continuous health monitoring have the potential to promote the transition to more proactive and affordable healthcare. Electrocardiograms (ECGs), collected from portable devices, with noninvasive and cost-effective merits, have been widely used to monitor various health conditions. However, the dynamic and heterogeneous pattern of ECG signals makes relevant feature construction and predictive model development a challenging task. In this study, we aim to develop an integrated approach for one-day-forward wellness prediction in the community-dwelling elderly using single-lead short ECG signal data via multiple-features construction and predictive model implementation. Vital signs data from the elderly were collected via station-based equipment on a daily basis. After data preprocessing, a set of features were constructed from ECG signals based on the integration of various models, including time and frequency domain analysis, a wavelet transform-based model, ensemble empirical mode decomposition (EEMD), and the refined composite multiscale sample entropy (RCMSE) model. Then, a machine learning based predictive model was established to map the l-day lagged features to wellness condition. The results showed that the approach developed in this study achieved the best performance for wellness prediction in the community-dwelling elderly. In practice, the proposed approach could be useful in the timely identification of elderly people who might have health risks, and could facilitating decision-making to take appropriate interventions.


Assuntos
Algoritmos , Vida Independente , Idoso , Eletrocardiografia/métodos , Humanos , Aprendizado de Máquina , Análise de Ondaletas
16.
Artigo em Inglês | MEDLINE | ID: mdl-34133283

RESUMO

BACKGROUND: In medicine, chromosome karyotyping analysis plays a crucial role in prenatal diagnosis for diagnosing whether a fetus has severe defects or genetic diseases. However, chromosome instance segmentation is the most critical obstacle to automatic chromosome karyotyping analysis due to the complicated morphological characteristics of chromosome clusters, restricting chromosome karyotyping analysis to highly depend on skilled clinical analysts. METHOD: In this paper, we build a clinical dataset and propose multiple segmentation baselines to tackle the chromosome instance segmentation problem of various overlapping and touching chromosome clusters. First, we construct a clinical dataset for deep learning-based chromosome instance segmentation models by collecting and annotating 1,655 privacy-removal chromosome clusters. After that, we design a chromosome instance labeled dataset augmentation (CILA) algorithm for the clinical dataset to improve the generalization performance of deep learning-based models. Last, we propose a chromosome instance segmentation framework and implement multiple baselines for the proposed framework based on various instance segmentation models. RESULTS AND CONCLUSIONS: Experiments evaluated on the clinical dataset show that the best baseline of the proposed framework based on the Mask-RCNN model yields an outstanding result with 77% mAP, 97.5% AP50, and 95.5% AP75 segmentation precision, and 95.38% accuracy, which exceeds results reported in current chromosome instance segmentation methods. The quantitative evaluation results demonstrate the effectiveness and advancement of the proposed method for the chromosome instance segmentation problem. The experimental code and privacy-removal clinical dataset can be found at Github.


Assuntos
Cromossomos , Processamento de Imagem Assistida por Computador , Algoritmos
17.
Comput Biol Med ; 140: 105039, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34864299

RESUMO

Major depressive disorder (MDD) is a common mental illness characterized by persistent feeling of depressed mood and loss of interest. It would cause, in a severe case, suicide behaviors. In clinical settings, automatic MDD detection is mainly based on electroencephalogram (EEG) signals with supervised learning techniques. However, supervised-based MDD detection methods encounter two ineviTable bottlenecks: firstly, such methods rely heavily on an EEG training dataset with MDD labels annotated by a physical therapist, leading to subjectivity and high cost; secondly, most of EEG signals are unlabeled in a real scenario. In this paper, a novel semisupervised-based MDD detection method named MDD-TSVM is presented. Specifically, the MDD-TSVM utilizes the semisupervised method of transductive support vector machine (TSVM) as its backbone, further dividing the unlabeled penalty item of the TSVM objective function into two pseudo-labeled penalty items with or without MDD. By such improvement, the MDD-SVM can make full use of labeled and unlabeled datasets as well as alleviate the class imbalance problem. Experiment results showed that our proposed MDD-TSVM achieved F1 score of 0.85 ± 0.05 and accuracy of 0.89 ± 0.03 on identifying MDD patients, which is superior to the state-of-the-art methods.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1694-1697, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891612

RESUMO

Major depressive disorder (MDD) is a common mental illness characterized by a persistent feeling of low mood, sadness, fatigue, despair, etc.. In a serious case, patients with MDD may have suicidal thoughts or even suicidal behaviors. In clinical practice, a widely used method of MDD detection is based on a professional rating scale. However, the scale-based diagnostic method is highly subjective, and requires a professional assessment from a trained staff. In this work, 92 participants were recruited to collect EEG signals in the Shenzhen Traditional Chinese Medicine Hospital, assessing MDD severity with the HAMD-17 rating scale by a trained physician. Two data mining methods of logistic regression (LR) and support vector machine (SVM) with derived EEG-based beta-alpha-ratio features, namely LR-DF and SVM-DF, are employed to screen out patients with MDD. Experimental results show that the presented the LR-DF and SVM-DF achieved F 1 scores of 0:76 0:30 and 0:92 0:18, respectively, which have obvious superiority to the LR and SVM without derived EEG-based beta-alpha-ratio features.


Assuntos
Transtorno Depressivo Maior , Mineração de Dados , Transtorno Depressivo Maior/diagnóstico , Eletroencefalografia , Humanos , Ideação Suicida , Máquina de Vetores de Suporte
19.
IEEE J Biomed Health Inform ; 22(6): 1744-1753, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30106699

RESUMO

Atrial fibrillation (AF) is one of the most common sustained chronic cardiac arrhythmia in elderly population, associated with a high mortality and morbidity in stroke, heart failure, coronary artery disease, systemic thromboembolism, etc. The early detection of AF is necessary for averting the possibility of disability or mortality. However, AF detection remains problematic due to its episodic pattern. In this paper, a multiscaled fusion of deep convolutional neural network (MS-CNN) is proposed to screen out AF recordings from single lead short electrocardiogram (ECG) recordings. The MS-CNN employs the architecture of two-stream convolutional networks with different filter sizes to capture features of different scales. The experimental results show that the proposed MS-CNN achieves 96.99% of classification accuracy on ECG recordings cropped/padded to 5 s. Especially, the best classification accuracy, 98.13%, is obtained on ECG recordings of 20 s. Compared with artificial neural network, shallow single-stream CNN, and VisualGeometry group network, the MS-CNN can achieve the better classification performance. Meanwhile, visualization of the learned features from the MS-CNN demonstrates its superiority in extracting linear separable ECG features without hand-craft feature engineering. The excellent AF screening performance of the MS-CNN can satisfy the most elders for daily monitoring with wearable devices.


Assuntos
Fibrilação Atrial/diagnóstico , Eletrocardiografia/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA