Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676140

RESUMO

The graph neural network (GNN) has shown outstanding performance in processing unstructured data. However, the downstream task performance of GNN strongly depends on the accuracy of data graph structural features and, as a type of deep learning (DL) model, the size of the training dataset is equally crucial to its performance. This paper is based on graph neural networks to predict and complete the target radio environment map (REM) through multiple complete REMs and sparse spectrum monitoring data in the target domain. Due to the complexity of radio wave propagation in space, it is difficult to accurately and explicitly construct the spatial graph structure of the spectral data. In response to the two above issues, we propose a multi-source domain adaptive of GNN for regression (GNN-MDAR) model, which includes two key modules: (1) graph structure alignment modules are used to capture and learn graph structure information shared by cross-domain radio propagation and extract reliable graph structure information for downstream reference signal receiving power (RSRP) prediction task; and (2) a spatial distribution matching module is used to reduce the feature distribution mismatch across spatial grids and improve the model's ability to remain domain invariant. Based on the measured REMs dataset, the comparative results of simulation experiments show that the GNN-MDAR outperforms the other four benchmark methods in accuracy when there is less RSRP label data in the target domain.

2.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894261

RESUMO

This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two rows of metal columns in the dielectric substrate, electromagnetic waves can be more effectively transmitted to reduce dissipation, and attenuation loss can be lowered to improve energy radiation efficiency. This antenna couples TEM mode electromagnetic waves into free space by periodically arranging 72 complementary split ring resonators (CSRRs). The LC layer is encapsulated in the transmission medium between the ML and the metal grounding plate. The simulation results show that the antenna can achieve a 106° continuous beam turning from reverse -52° to forward 54° at a frequency of 38 GHz with the holographic principle. In practical applications, beam scanning is achieved by applying a DC bias voltage to the LC layer to adjust the LC dielectric constant. We designed a sector-blocking bias feeder structure to minimize the impact of RF signals on the DC source and avoid the effect of DC bias on antenna radiation. Further comparative experiments revealed that the bias feeder can significantly diminish the influence between the two sources, thereby reducing the impact of bias voltage introduced by LC layer feeding on antenna performance. Compared with existing approaches, the antenna array simultaneously combines the advantages of high frequency band, high gain, wide beam scanning range, and low loss.

3.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001199

RESUMO

Automatic Modulation Recognition (AMR) is a key technology in the field of cognitive communication, playing a core role in many applications, especially in wireless security issues. Currently, deep learning (DL)-based AMR technology has achieved many research results, greatly promoting the development of AMR technology. However, the few-shot dilemma faced by DL-based AMR methods greatly limits their application in practical scenarios. Therefore, this paper endeavored to address the challenge of AMR with limited data and proposed a novel meta-learning method, the Multi-Level Comparison Relation Network with Class Reconstruction (MCRN-CR). Firstly, the method designs a structure of a multi-level comparison relation network, which involves embedding functions to output their feature maps hierarchically, comprehensively calculating the relation scores between query samples and support samples to determine the modulation category. Secondly, the embedding function integrates a reconstruction module, leveraging an autoencoder for support sample reconstruction, wherein the encoder serves dual purposes as the embedding mechanism. The training regimen incorporates a meta-learning paradigm, harmoniously combining classification and reconstruction losses to refine the model's performance. The experimental results on the RadioML2018 dataset show that our designed method can greatly alleviate the small sample problem in AMR and is superior to existing methods.

4.
Sensors (Basel) ; 24(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39065962

RESUMO

Communication signal reconstruction technology represents a critical area of research within communication countermeasures and signal processing. Considering traditional OFDM signal reconstruction methods' intricacy and suboptimal reconstruction performance, a dual discriminator CGAN model incorporating LSTM and Transformer is proposed. When reconstructing OFDM signals using the traditional CNN network, it becomes challenging to extract intricate temporal information. Therefore, the BiLSTM network is incorporated into the first discriminator to capture timing details of the IQ (In-phase and Quadrature-phase) sequence and constellation map information of the AP (Amplitude and Phase) sequence. Subsequently, following the addition of fixed position coding, these data are fed into the core network constructed based on the Transformer Encoder for further learning. Simultaneously, to capture the correlation between the two IQ signals, the VIT (Vision in Transformer) concept is incorporated into the second discriminator. The IQ sequence is treated as a single-channel two-dimensional image and segmented into pixel blocks containing IQ sequence through Conv2d. Fixed position coding is added and sent to the Transformer core network for learning. The generator network transforms input noise data into a dimensional space aligned with the IQ signal and embedding vector dimensions. It appends identical position encoding information to the IQ sequence before sending it to the Transformer network. The experimental results demonstrate that, under commonly utilized OFDM modulation formats such as BPSK, QPSK, and 16QAM, the time series waveform, constellation diagram, and spectral diagram exhibit high-quality reconstruction. Our algorithm achieves improved signal quality while managing complexity compared to other reconstruction methods.

5.
Sensors (Basel) ; 23(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050825

RESUMO

The range-gated laser imaging instrument can capture face images in a dark environment, which provides a new idea for long-distance face recognition at night. However, the laser image has low contrast, low SNR and no color information, which affects observation and recognition. Therefore, it becomes important to convert laser images into visible images and then identify them. For image translation, we propose a laser-visible face image translation model combined with spectral normalization (SN-CycleGAN). We add spectral normalization layers to the discriminator to solve the problem of low image translation quality caused by the difficulty of training the generative adversarial network. The content reconstruction loss function based on the Y channel is added to reduce the error mapping. The face generated by the improved model on the self-built laser-visible face image dataset has better visual quality, which reduces the error mapping and basically retains the structural features of the target compared with other models. The FID value of evaluation index is 36.845, which is 16.902, 13.781, 10.056, 57.722, 62.598 and 0.761 lower than the CycleGAN, Pix2Pix, UNIT, UGATIT, StarGAN and DCLGAN models, respectively. For the face recognition of translated images, we propose a laser-visible face recognition model based on feature retention. The shallow feature maps with identity information are directly connected to the decoder to solve the problem of identity information loss in network transmission. The domain loss function based on triplet loss is added to constrain the style between domains. We use pre-trained FaceNet to recognize generated visible face images and obtain the recognition accuracy of Rank-1. The recognition accuracy of the images generated by the improved model reaches 76.9%, which is greatly improved compared with the above models and 19.2% higher than that of laser face recognition.

6.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617068

RESUMO

Radio signals are polluted by noise in the process of channel transmission, which will lead to signal distortion. Noise reduction of radio signals is an effective means to eliminate the impact of noise. Using deep learning (DL) to denoise signals can reduce the dependence on artificial domain knowledge, while traditional signal-processing-based denoising methods often require knowledge of the artificial domain. Aiming at the problem of noise reduction of radio communication signals, a radio communication signal denoising method based on the relativistic average generative adversarial networks (RaGAN) is proposed in this paper. This method combines the bidirectional long short-term memory (Bi-LSTM) model, which is good at processing time-series data with RaGAN, and uses the weighted loss function to construct a noise reduction model suitable for radio communication signals, which realizes the end-to-end denoising of radio signals. The experimental results show that, compared with the existing methods, the proposed algorithm has significantly improved the noise reduction effect. In the case of a low signal-to-noise ratio (SNR), the signal modulation recognition accuracy is improved by about 10% after noise reduction.

7.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684676

RESUMO

CycleGAN is widely used in various image translations, such as thermal-infrared-visible-image translation, near-infrared-visible-image translation, and shortwave-infrared-visible-image translation. However, most image translations are used for infrared-to-visible translation, and the wide application of laser imaging has an increasingly strong demand for laser-visible image translation. In addition, the current image translation is mainly aimed at frontal face images, which cannot be effectively utilized to translate faces at a certain angle. In this paper, we construct a laser-visible face mapping dataset; in case of the gradient dispersion of the objective function of the original adversarial loss, the least squares loss function is used to replace the cross-entropy loss function and an identity loss function is added to strengthen the network constraints on the generator. The experimental results indicate that the SSIM value of the improved model increases by 1.25%, 8%, 0, 8%, the PSNR value is not much different, and the FID value decreases by 11.22, 12.85, 43.37 and 72.19, respectively, compared with the CycleGAN, Pix2pix, U-GAN-IT and StarGAN models. In the profile image translation, in view of the poor extraction effect of CycleGAN's original feature extraction module ResNet, the RRDB module is used to replace it based on the first improvement. The experimental results show that, compared with the CycleGAN, Pix2pix, U-GAN-IT, StarGAN and the first improved model, the SSIM value of the improved model increased by 3.75%, 10.67%, 2.47%, 10.67% and 2.47%, respectively; the PSNR value increased by 1.02, 2.74, 0.32, 0.66 and 0.02, respectively; the FID value reduced by 26.32, 27.95, 58.47, 87.29 and 15.1, respectively. Subjectively, the contour features and facial features were better conserved.


Assuntos
Processamento de Imagem Assistida por Computador , Lasers , Processamento de Imagem Assistida por Computador/métodos
8.
Sensors (Basel) ; 22(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062379

RESUMO

Aiming at the problems of low accuracy of strawberry fruit picking and large rate of mispicking or missed picking, YOLOv5 combined with dark channel enhancement is proposed. In "Fengxiang" strawberry, the criterion of "bad fruit" is added to the conventional three criteria of ripeness, near-ripeness, and immaturity, because some of the bad fruits are close to the color of ripe fruits, but the fruits are small and dry. The training accuracy of the four kinds of strawberries with different ripeness is above 85%, and the testing accuracy is above 90%. Then, to meet the demand of all-day picking and address the problem of low illumination of images collected at night, an enhancement algorithm is proposed to enhance the images, which are recognized. We compare the actual detection results of the five enhancement algorithms, i.e., histogram equalization, Laplace transform, gamma transform, logarithmic variation, and dark channel enhancement processing under the different numbers of fruits, periods, and video tests. The results show that combined with dark channel enhancement, YOLOv5 has the highest recognition rate. Finally, the experimental results demonstrate that YOLOv5 is better than SSD, DSSD, and EfficientDet in terms of recognition accuracy, and the correct rate can reach more than 90%. Meanwhile, the method has good robustness in complex environments such as partial occlusion and multiple fruits.


Assuntos
Fragaria , Algoritmos , Frutas , Iluminação
9.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016010

RESUMO

Radar signal anomaly detection is an effective method to detect potential threat targets. Given the low Accuracy of the traditional AE model and the complex network of GAN, an anomaly detection method based on ResNet-AE is proposed. In this method, CNN is used to extract features and learn the potential distribution law of data. LSTM is used to discover the time dependence of data. ResNet is used to alleviate the problem of gradient loss and improve the efficiency of the deep network. Firstly, the signal subsequence is extracted according to the pulse's rising edge and falling edge. Then, the normal radar signal data are used for model training, and the mean square error distance is used to calculate the error between the reconstructed data and the original data. Finally, the adaptive threshold is used to determine the anomaly. Experimental results show that the recognition Accuracy of this method can reach more than 85%. Compared with AE, CNN-AE, LSTM-AE, LSTM-GAN, LSTM-based VAE-GAN, and other models, Accuracy is increased by more than 4%, and it is improved in Precision, Recall, F1-score, and AUC. Moreover, the model has a simple structure, strong stability, and certain universality. It has good performance under different SNRs.

10.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080956

RESUMO

Automatic modulation discrimination (AMC) is one of the critical technologies in spatial cognitive communication systems. Building a high-performance AMC model in intelligent receivers can help to realize adaptive signal synchronization and demodulation. However, tackling the intra-class diversity problem is challenging to AMC based on deep learning (DL), as 16QAM and 64QAM are not easily distinguished by DL networks. In order to overcome the problem, this paper proposes a joint AMC model that combines DL and expert features. In this model, the former builds a neural network that can extract the time series and phase features of in-phase and quadrature component (IQ) samples, which improves the feature extraction capability of the network in similar models; the latter achieves accurate classification of QAM signals by constructing effective feature parameters. Experimental results demonstrate that our proposed joint AMC model performs better than the benchmark networks. The classification accuracy is increased by 11.5% at a 10 dB signal-to-noise ratio (SNR). At the same time, it also improves the discrimination of QAM signals.


Assuntos
Comunicação , Redes Neurais de Computação , Cognição , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA