Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Atmos Environ (1994) ; 177: 175-186, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29808078

RESUMO

Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

2.
J Occup Environ Hyg ; 12(9): 577-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25894766

RESUMO

Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80°F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m(3)) in a controlled exposure facility. The 2-hr averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R(2) = 0.84; slope = 1.17±0.06; N = 27) and reported ∼17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hr averaged EC concentrations obtained by the Airtec instrument vs. the NIOSH method (p < 0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5% from relative humidity and temperature on real-time measurements. The overall deviations of these real-time monitors from the NIOSH method results were ≤20%. However, simultaneous monitoring of temperature and relative humidity is recommended in field investigations to understand and correct for environmental impacts on real-time monitoring data.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monóxido de Carbono/análise , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Emissões de Veículos/análise , Umidade , National Institute for Occupational Safety and Health, U.S. , Tamanho da Partícula , Temperatura , Estados Unidos
3.
Atmos Environ (1994) ; 94: 701-708, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25750579

RESUMO

Airborne hexavalent chromium (Cr(VI)) is a known pulmonary carcinogen and can be emitted from both natural and anthropogenic sources, including diesel emissions. However, there is limited knowledge about ambient Cr(VI) concentration levels and its particle size distribution. This pilot study characterized ambient Cr(VI) concentrations in the New Jersey Meadowlands (NJ ML) district, which is close to the heavily trafficked New Jersey Turnpike (NJTPK) as well as Chromium Ore Processing Residue (COPR) waste sites. Monitoring was simultaneously conducted at two sites, William site (~50 m from NJTPK) and MERI site (~700 m from NJTPK). The distance between the two sites is approximately 6.2 km. Ambient Cr(VI) concentrations and PM2.5 mass concentrations were concurrently measured at both sites during summer and winter. The summer concentrations (mean ± S.D. [median]), 0.13 ± 0.06 [0.12] ng/m3 at the MERI site and 0.08 ± 0.05 [0.07] ng/m3 at the William site, were all significantly higher than the winter concentrations, 0.02 ± 0.01 [0.02] ng/m3 and 0.03 ± 0.01 [0.03] ng/m3 at the MERI and William sites, respectively. The site difference (i.e., MERI > William) was observed for summer Cr(VI) concentrations; however, no differences for winter and pooled datasets. These results suggest higher Cr(VI) concentrations may be attributed from stronger atmospheric reactions such as photo-oxidation of Cr(III) to Cr(VI) in the summer. The Cr(VI) distribution as a function of particle size, ranging from 0.18 to 18 µm, was determined at the William site. It was found that Cr(VI) was enriched in the particles less than 2.5 µm in diameter (PM2.5). This finding suggested potential health concerns, because PM2.5 are easily inhaled and deposited in the alveoli. A multiple linear regression analysis confirmed ambient Cr(VI) concentrations were significantly affected by meteorological factors (i.e., temperature and humidity) and reactive gases/particles (i.e., O3, Fe and Mn).

4.
J Expo Sci Environ Epidemiol ; 25(6): 616-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26329141

RESUMO

Although all chromite ore processing residue (COPR) sites near residential neighborhoods in Jersey City, New Jersey have undergone remediation, recent studies found widespread, but low levels of hexavalent chromium (Cr(+6)) in house dust both in Jersey City and in communities with no known sources of Cr(+6). This study was designed as a follow-up to determine whether there is an association between current Cr(+6) levels in house dust and urinary chromium concentrations in young children. Dust samples (N=369) were collected from 123 homes. The median Cr(+6) concentration was 3.3 µg/g (mean±SD 5.2±7.5) and the median Cr(+6) loading was 1.1 µg/m(2) (1.9±3.1). These levels were not elevated compared with previously reported levels in background communities (median concentration=3.5 µg/g; median loading=2.8 µg/m(2)). Urinary chromium concentrations were measured in spot urine samples collected from 150 children, ages 3 months to 6 years. The median uncorrected urinary chromium concentration was 0.19 µg/l (0.22±0.16). Current urinary chromium concentrations were significantly lower than those previously reported before and during remediation (t-test; P<0.001). Urinary chromium concentrations were not significantly higher in homes with high (75th or 90th percentile) Cr(+6) dust levels (concentration or loading) compared with other homes. Multiple linear regression was used to examine the relationship between Cr(+6) levels (concentration and loading) in house dust and urinary chromium concentrations (uncorrected and specific gravity corrected). Contrary to pre-remediation studies, we did not find a positive association between Cr(+6) levels in house dust and urinary chromium concentrations. The findings indicate that current Cr(+6) levels in house dust are not positively associated with children's chromium exposure as measured by urinary chromium, and the children's exposure to Cr(+6) in house dust is below the level that could be identified by urine sampling.


Assuntos
Cromo/urina , Poeira/análise , Recuperação e Remediação Ambiental , Criança , Pré-Escolar , Cromo/análise , Exposição Ambiental/análise , Feminino , Humanos , Lactente , Masculino , New Jersey
5.
J Expo Sci Environ Epidemiol ; 21(5): 484-94, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21522187

RESUMO

We describe spatial and temporal patterns of seven chemical elements commonly observed in fine particulate matter (PM) and thought to be linked to roadway emissions that were measured at residential locations in New York City (NYC). These elements, that is, Si, Al, Ti, Fe, Ba, Br, and black carbon (BC), were found to have significant spatial and temporal variability at our 10 residential PM(2.5) sampling locations. We also describe pilot study data of near-roadway samples of both PM(10-2.5) and PM(2.5) chemical elements of roadway emissions. PM(2.5) element concentrations collected on the George Washington Bridge (GWB) connecting NYC and New Jersey were higher that similar elemental concentration measured at residential locations. Coarse-particle elements (within PM(10-2.5)) on the GWB were 10-100 times higher in concentration than their PM(2.5) counterparts. Roadway elements were well correlated with one another in both the PM(2.5) and PM(10-2.5) fractions, suggesting common sources. The same elements in the PM(2.5) collected at residential locations were less correlated, suggesting either different sources or different processing mechanisms for each element. Despite the fact that these elements are only a fraction of total PM(2.5) or PM(10-2.5) mass, the results have important implications for near-roadway exposures where elements with known causal links to health effects are shown to be at elevated concentrations in both the PM(2.5) and PM(10-2.5) size ranges.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Aerossóis/química , Humanos , Metais/análise , Cidade de Nova Iorque , Tamanho da Partícula , Material Particulado/análise , Medição de Risco , Estações do Ano , Meios de Transporte , Saúde da População Urbana , Emissões de Veículos/análise
6.
Sci Total Environ ; 408(21): 4993-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20692023

RESUMO

In contrast to Cr(+3), Cr(+6) is carcinogenic and allergenic. Although Cr(+6) can occur naturally, it is thought that most soil Cr(+6) is anthropogenic, however, the extent of Cr(+6) in the background environment is unknown. Cr(+6)-containing chromite ore processing residue (COPR) from chromate manufacture was deposited in numerous locations in Jersey City (JC), New Jersey. In the 1990's, significantly elevated concentrations of total Cr (Cr(+6)+Cr(+3)) were found in house dust near COPR sites. We undertook a follow-up study to determine ongoing COPR exposure. We compared Cr(+6) in house dust in JC to selected background communities with no known sources of Cr(+6). Samples were collected from living areas, basements and window wells. Cr(+6) was detected in dust from all JC and background houses. In the JC homes, the mean (+ or - SD) Cr(+6) concentration for all samples was 3.9 + or - 7.0 microg/g (range: non-detect-90.4 microg/g), and the mean Cr(+6) loading was 5.8 + or - 15.7 microg/m(2) (range: non-detect-196.4 microg/m(2)). In background homes, the mean Cr(+6) concentrations of all samples was 4.6 + or - 7.8 microg/g, (range, 0.05-56.6 microg/g). The mean loading was 10.0 + or - 27.9 microg/m(2) (range, 0.22-169.3 microg/m(2)). There was no significant difference between Cr(+6) dust concentrations in Jersey City and background locations. Stratification by sample location within houses and sampling method gave similar results. Samples exceeding 20 microg/g were obtained only from single wood surfaces in different homes. Lower concentrations in window well samples suggests transport from outside is not the major source of indoor Cr(+6). Landscaping and groundcover may influence indoor Cr(+6). There appears to be a widespread low level background of Cr(+6) that is not elevated in Jersey City homes despite its historic COPR contamination. It is possible that house dust, in general, is a source of Cr(+6) exposure with potential implications for persistence of chromium allergic contact dermatitis.


Assuntos
Carcinógenos Ambientais/análise , Cromo/análise , Poeira/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Indústria Química , Poluição Ambiental/estatística & dados numéricos , Habitação , Resíduos Industriais , New Jersey
7.
Environ Sci Technol ; 41(2): 580-5, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17310725

RESUMO

Airborne aldehyde and ketone (carbonyl) sampling methodologies based on derivatization with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents could unequivocally be considered the "gold" standard. Originally developed in the late 1970s, these methods have been extensively evaluated and developed up to the present day. However, these methods have been inadequately evaluated for the long-term (i.e., 24 h or greater) sampling collection efficiency (CE) of carbonyls other than formaldehyde. The current body of literature fails to demonstrate that DNPH-coated solid sorbent sampling methods have acceptable CEs for the long-term sampling of carbonyls other than formaldehyde. Despite this, such methods are widely used to report the concentrations of multiple carbonyls from long-term sampling, assuming approximately 100% CEs. Laboratory experiments were conducted in this study to evaluate the long-term formaldehyde and acetaldehyde sampling CEs for several commonly used DNPH-coated solid sorbents. Results from sampling known concentrations of formaldehyde and acetaldehyde generated in a dynamic atmosphere generation system demonstrate that the 24-hour formaldehyde sampling CEs ranged from 83 to 133%, confirming the findings made in previous studies. However, the 24-hour acetaldehyde sampling CEs ranged from 1 to 62%. Attempts to increase the acetaldehyde CEs by adding acid to the samples post sampling were unsuccessful. These results indicate that assuming approximately 100% CEs for 24-hour acetaldehyde sampling, as commonly done with DNPH-coated solid sorbent methods, would substantially under estimate acetaldehyde concentrations.


Assuntos
Acetaldeído/análise , Acetaldeído/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Fenil-Hidrazinas/química , Adsorção , Cromatografia Líquida de Alta Pressão , Estudos de Avaliação como Assunto , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA