Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 157(4): 882-896, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813611

RESUMO

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.


Assuntos
Mitofagia , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuína 1/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Xeroderma Pigmentoso/fisiopatologia , Envelhecimento , Animais , Apoptose , Autofagia , Caenorhabditis elegans , Linhagem Celular , Humanos , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Ratos , Proteína Desacopladora 2 , Xeroderma Pigmentoso/metabolismo
2.
Nat Rev Mol Cell Biol ; 17(5): 308-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26956196

RESUMO

Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.


Assuntos
Envelhecimento , Dano ao DNA , Mitocôndrias/fisiologia , Animais , Apoptose , Núcleo Celular/genética , Reparo do DNA , Instabilidade Genômica , Humanos , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33341877

RESUMO

Biomedical knowledge graphs (KGs), which can help with the understanding of complex biological systems and pathologies, have begun to play a critical role in medical practice and research. However, challenges remain in their embedding and use due to their complex nature and the specific demands of their construction. Existing studies often suffer from problems such as sparse and noisy datasets, insufficient modeling methods and non-uniform evaluation metrics. In this work, we established a comprehensive KG system for the biomedical field in an attempt to bridge the gap. Here, we introduced PharmKG, a multi-relational, attributed biomedical KG, composed of more than 500 000 individual interconnections between genes, drugs and diseases, with 29 relation types over a vocabulary of ~8000 disambiguated entities. Each entity in PharmKG is attached with heterogeneous, domain-specific information obtained from multi-omics data, i.e. gene expression, chemical structure and disease word embedding, while preserving the semantic and biomedical features. For baselines, we offered nine state-of-the-art KG embedding (KGE) approaches and a new biological, intuitive, graph neural network-based KGE method that uses a combination of both global network structure and heterogeneous domain features. Based on the proposed benchmark, we conducted extensive experiments to assess these KGE models using multiple evaluation metrics. Finally, we discussed our observations across various downstream biological tasks and provide insights and guidelines for how to use a KG in biomedicine. We hope that the unprecedented quality and diversity of PharmKG will lead to advances in biomedical KG construction, embedding and application.


Assuntos
Pesquisa Biomédica , Mineração de Dados , Redes Neurais de Computação , Semântica , Software , Benchmarking , Humanos
4.
Alzheimers Dement ; 19(12): 5573-5582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37264981

RESUMO

INTRODUCTION: The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD. METHODS: In our longitudinal case-control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls. RESULTS: Patients with AD exhibited higher concentrations of KA (ß = 0.18, P < 0.01) and picolinic acid (ß = 0.20, P < 0.01) than the controls. KA was positively associated with tau pathology (ß = 0.29, P < 0.01), and a higher concentration of KA was associated with the slower progression of dementia. DISCUSSION: The higher concentrations of neuroprotective metabolites KA and picolinic acid suggest that the activation of the KP's neuroprotective branch is an adaptive response in AD and may be a promising target for intervention and treatment. Highlights Patients with Alzheimer's disease (AD) exhibited higher concentrations of kynurenic acid and picolinic acid than controls. Higher concentrations of kynurenic acid were associated with slower progression of AD. Potential neurotoxic kynurenines were not increased among patients with AD. Activation of the kynurenine pathway's neuroprotective branch may be an adaptive response in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Cinurenina/líquido cefalorraquidiano , Ácido Cinurênico/metabolismo , Estudos de Casos e Controles , Progressão da Doença
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613582

RESUMO

Nicotinamide adenine dinucleotide (oxidized form, NAD+) is a critical coenzyme, with functions ranging from redox reactions and energy metabolism in mitochondrial respiration and oxidative phosphorylation to being a central player in multiple cellular signaling pathways, organ resilience, health, and longevity. Many of its cellular functions are executed via serving as a co-substrate for sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), and CD38. Kidney damage and diseases are common in the general population, especially in elderly persons and diabetic patients. While NAD+ is reduced in acute kidney injury (AKI) and chronic kidney disease (CKD), mounting evidence indicates that NAD+ augmentation is beneficial to AKI, although conflicting results exist for cases of CKD. Here, we review recent progress in the field of NAD+, mainly focusing on compromised NAD+ levels in AKI and its effect on essential cellular pathways, such as mitochondrial dysfunction, compromised autophagy, and low expression of the aging biomarker αKlotho (Klotho) in the kidney. We also review the compromised NAD+ levels in renal fibrosis and senescence cells in the case of CKD. As there is an urgent need for more effective treatments for patients with injured kidneys, further studies on NAD+ in relation to AKI/CKD may shed light on novel therapeutics.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Sirtuínas , Humanos , Metabolismo Energético , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo
6.
Appl Soft Comput ; 116: 108291, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34934410

RESUMO

The world is currently experiencing an ongoing pandemic of an infectious disease named coronavirus disease 2019 (i.e., COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computed Tomography (CT) plays an important role in assessing the severity of the infection and can also be used to identify those symptomatic and asymptomatic COVID-19 carriers. With a surge of the cumulative number of COVID-19 patients, radiologists are increasingly stressed to examine the CT scans manually. Therefore, an automated 3D CT scan recognition tool is highly in demand since the manual analysis is time-consuming for radiologists and their fatigue can cause possible misjudgment. However, due to various technical specifications of CT scanners located in different hospitals, the appearance of CT images can be significantly different leading to the failure of many automated image recognition approaches. The multi-domain shift problem for the multi-center and multi-scanner studies is therefore nontrivial that is also crucial for a dependable recognition and critical for reproducible and objective diagnosis and prognosis. In this paper, we proposed a COVID-19 CT scan recognition model namely coronavirus information fusion and diagnosis network (CIFD-Net) that can efficiently handle the multi-domain shift problem via a new robust weakly supervised learning paradigm. Our model can resolve the problem of different appearance in CT scan images reliably and efficiently while attaining higher accuracy compared to other state-of-the-art methods.

7.
Appl Microbiol Biotechnol ; 104(11): 4675-4703, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32274562

RESUMO

This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.


Assuntos
Agaricales/química , Agaricales/classificação , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Misturas Complexas/química , Misturas Complexas/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ratos
8.
Appl Microbiol Biotechnol ; 104(10): 4211-4226, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32193575

RESUMO

Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Culicidae/química , Proteínas de Insetos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos/classificação , Proteínas Inativadoras de Ribossomos/farmacologia , Sementes/química
9.
Proc Natl Acad Sci U S A ; 113(44): 12502-12507, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791127

RESUMO

Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Transcrição Gênica , Linhagem Celular Tumoral , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , DNA Ribossômico/genética , Quadruplex G , Técnicas de Silenciamento de Genes , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo
10.
Invest New Drugs ; 33(1): 1-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25200916

RESUMO

BACKGROUND: The incidence and mortality of hepatocellular carcinoma (HCC) remain high worldwide. Drug screening from natural plants is one of the potential therapeutic approaches on HCC. METHODS: The antitumor effect of momordica charantia lectin (MCL) was examined, using MTT, colony formation, AnnexinV/PI staining, western blot and animal model. RESULTS: MCL treatment induced G2/M phase arrest, autophagy, DNA fragmentation, mitochondrial injury, and subsequently cell apoptosis in HCC cells. Activation of caspase and MAPK pathway was involved in MCL-induced apoptosis. In vitro and in vivo studies showed that up-regulation of truncated Bid (tBid) upon MCL treatment. Correlation analysis revealed that Bid expression was reversely associated with the IC50 of MCL. Bid suppression using Bid siRNA, BI-6C9 (Bid inhibitor) and Z-IETD-FMK (caspase 8 inhibitor) dramatically attenuated MCL-induced cell proliferation inhibition, caspase 3 activation, ΔΨm depolarization and apoptosis. In addition, combination of MCL and sorafenib exerted stronger lethal activity towards HCC in vitro and in vivo. CONCLUSION: Our data show that the natural compound MCL manifests antitumor activities towards HCC and therefore suggest MCL as a promising chemotherapeutic agent.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Momordica charantia , Lectinas de Plantas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Nus , Lectinas de Plantas/farmacologia , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochim Biophys Acta ; 1833(5): 987-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23274857

RESUMO

Breast cancer is the second most common cancer with a high incidence rate worldwide. One of the promising therapeutic approaches on breast cancer is to use the drugs that target the estrogen receptor (ER). In the present investigation, marmorin, a type I ribosome inactivating protein from the mushroom Hypsizigus marmoreus, inhibited the survival of breast cancer in vitro and in vivo. It evinced more potent cytotoxicity toward estrogen receptor (ER)-positive MCF7 breast cancer cells than ER-negative MDA-MB-231 cells. Further study disclosed that marmorin undermined the expression level of estrogen receptor α (ERα) and significantly inhibited the proliferation of MCF7 cells induced by 17ß-estradiol. Knockdown of ERα in MCF7 cells significantly attenuated the inhibitory effect of marmorin on proliferation, suggesting that the ERα-mediated pathway was implicated in the suppressive action of marmorin on ER-positive breast cancer cells. Moreover, marmorin induced time-dependent apoptosis in both MCF7 and MDA-MB-231 cells. It brought about G2/M-phase arrest, mitochondrial membrane potential depolarization and caspase-9 activation in MCF7 cells, and to a lesser extent in MDA-MB-231 cells. Marmorin triggered the death receptor apoptotic pathway (e.g. caspase-8 activation) and endoplasmic reticulum stress (ERS, as evidenced by phosphorylation of PERK and IRE1α, cleavage of caspase-12, and up-regulation of CHOP expression) in both MCF7 and MDA-MB-231 cells. In summary, marmorin exhibited inhibitory effect on breast cancer partially via diminution of ERα and apoptotic pathways mediated by mitochondrial, death receptor and ERS. The results advocate that marmorin is a potential candidate for breast cancer therapy.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Proteínas Fúngicas/administração & dosagem , Neoplasias Hormônio-Dependentes , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Regulação para Cima/efeitos dos fármacos , eIF-2 Quinase/metabolismo
12.
Appl Microbiol Biotechnol ; 98(8): 3475-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562325

RESUMO

Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper ß-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.


Assuntos
Antifúngicos/isolamento & purificação , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Produtos Biológicos/isolamento & purificação , Antifúngicos/farmacologia , Antivirais/farmacologia , Produtos Biológicos/farmacologia
13.
Brain Struct Funct ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916724

RESUMO

In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.

14.
Cell Biosci ; 14(1): 7, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184705

RESUMO

BACKGROUND: Metabolic dysfunction is one of the main symptoms of Werner syndrome (WS); however, the underlying mechanisms remain unclear. Here, we report that loss of WRN accelerates adipogenesis at an early stage both in vitro (stem cells) and in vivo (zebrafish). Moreover, WRN depletion causes a transient upregulation of late-stage of adipocyte-specific genes at an early stage. METHODS: In an in vivo study, we generated wrn-/- mutant zebrafish and performed histological stain and Oil Red O staining to assess the fat metabolism. In an in vitro study, we used RNA-seq and ATAC-seq to profile the transcriptional features and chromatin accessibility in WRN depleted adipocytes. Moreover, we performed ChIP-seq to further study the regulatory mechanisms of metabolic dysfunction in WS. RESULTS: Our findings show that mechanistically WRN deficiency causes SMARCA5 upregulation. SMARCA5 is crucial in chromatin remodeling and gene regulation. Additionally, rescuing WRN could normalize SMARCA5 expression and adipocyte differentiation. Moreover, we find that nicotinamide riboside (NR) supplementation restores adipocyte metabolism in both stem cells and zebrafish models. CONCLUSIONS: Our findings unravel a new mechanism for the influence of WRN in the early stage of adipogenesis and provide a possible treatment for metabolic dysfunction in WS. These data provide promising insights into potential therapeutics for ageing and ageing-related diseases.

15.
Int J Biol Sci ; 20(8): 2860-2880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904024

RESUMO

Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.


Assuntos
Astrócitos , DNA Polimerase gama , DNA Polimerase Dirigida por DNA , Mitocôndrias , Mutação , Astrócitos/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Humanos , Mitocôndrias/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios/metabolismo , Potencial da Membrana Mitocondrial , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Técnicas de Cocultura
16.
Lancet Healthy Longev ; 5(1): e17-e30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183996

RESUMO

BACKGROUND: Sexually active older adults are often more susceptible to HIV and other sexually transmitted infections (STIs) due to various health conditions (especially a weakened immune system) and low use of condoms. We aimed to assess the global, regional, and national burdens and trends of HIV and other STIs in older adults from 1990 to 2019. METHODS: We retrieved data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 on the incidence and disability-adjusted life-years (DALYs) of HIV and other STIs (syphilis, chlamydia, gonorrhoea, trichomoniasis, and genital herpes) for older adults aged 60-89 years in 204 countries and territories from 1990 to 2019. Estimated annual percentage changes in the age-standardised incidence and DALY rates of HIV and other STIs, by age, sex, and Socio-demographic Index (SDI), were calculated to quantify the temporal trends. Spearman correlation analysis was used to examine the relationship between age-standardised rates and SDI. FINDINGS: In 2019, among older adults globally, there were an estimated 77 327 (95% uncertainty interval 59 443 to 97 648) new cases of HIV (age-standardised incidence rate 7·6 [5·9 to 9·6] per 100 000 population) and 26 414 267 (19 777 666 to 34 860 678) new cases of other STIs (2607·1 [1952·1 to 3440·8] per 100 000). The age-standardised incidence rate decreased by an average of 2·02% per year (95% CI -2·38 to -1·66) for HIV and remained stable for other STIs (-0·02% [-0·06 to 0·01]) from 1990 to 2019. The number of DALYs globally in 2019 was 1 905 099 (95% UI 1 670 056 to 2 242 807) for HIV and 132 033 (95% UI 83 512 to 225 630) for the other STIs. The age-standardised DALY rate remained stable from 1990 to 2019, with an average change of 0·97% (95% CI -0·54 to 2·50) per year globally for HIV but decreased by an annual average of 1·55% (95% CI -1·66 to -1·43) for other STIs. Despite the global decrease in the age-standardised incidence rate of HIV in older people from 1990 to 2019, many regions showed increases, with the largest increases seen in eastern Europe (average annual change 17·84% [14·16 to 21·63], central Asia (14·26% [11·35 to 17·25]), and high-income Asia Pacific (7·52% [6·54 to 8·51]). Regionally, the age-standardised incidence and DALY rates of HIV and other STIs decreased with increases in the SDI. INTERPRETATION: Although the incidence and DALY rates of HIV and STIs either declined or remained stable from 1990 to 2019, there were regional and demographic disparities. Health-care providers should be aware of the effects of ageing societies and other societal factors on the risk of HIV and other STIs in older adults, and develop age-appropriate interventions. The disparities in the allocation of health-care resources for older adults among regions of different SDIs should be addressed. FUNDING: Natural Science Foundation of China, Fujian Province's Third Batch of Flexible Introduction of High-Level Medical Talent Teams, Science and Technology Innovation Team (Tianshan Innovation Team) Project of Xinjiang Uighur Autonomous Region, Cure Alzheimer's Fund, Helse Sør-Øst, the Research Council of Norway, Molecule/VitaDAO, NordForsk Foundation, Akershus University Hospital, the Civitan Norges Forskningsfond for Alzheimers Sykdom, the Czech Republic-Norway KAPPA programme, and the Rosa Sløyfe/Norwegian Cancer Society & Norwegian Breast Cancer Society.


Assuntos
Neoplasias da Mama , Gonorreia , Infecções por HIV , Herpes Genital , Infecções Sexualmente Transmissíveis , Humanos , Idoso , Feminino , Carga Global da Doença , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções por HIV/epidemiologia
17.
Int J Biol Sci ; 20(4): 1194-1217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385069

RESUMO

Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.


Assuntos
Esclerose Cerebral Difusa de Schilder , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Niacinamida/análogos & derivados , Compostos de Piridínio , Humanos , DNA Polimerase gama , NAD/genética , DNA Mitocondrial/genética , Mutação
18.
Curr Neuropharmacol ; 21(7): 1477-1481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35762540

RESUMO

Mitochondria are the main sites of energy production and a major source of metabolic stress. Not surprisingly, impairment of mitochondrial homeostasis is strongly associated with the development and progression of a broad spectrum of human pathologies, including neurodegenerative disorders. Mitophagy mediates the selective degradation of damaged organelles, thus promoting cellular viability and tissue integrity. Defective mitophagy triggers cellular senescence and prolonged neuroinflammation, leading eventually to cell death and brain homeostasis collapse. Here, we survey the intricate interplay between mitophagy and neuroinflammation, highlighting that mitophagy can be a focal point for therapeutic interventions to tackle neurodegeneration.


Assuntos
Mitofagia , Doenças Neurodegenerativas , Humanos , Mitofagia/fisiologia , Doenças Neuroinflamatórias , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo
19.
STAR Protoc ; 4(2): 102250, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37104093

RESUMO

Here, we present an olfactory-dependent chemotaxis assay for evaluating changes in memory-like behavior in both wild-type and Alzheimer's-disease-like C. elegans models. We describe steps for synchronizing and preparing C. elegans populations and for performing isoamyl alcohol conditioning during starvation and chemotaxis assaying. We then detail counting and quantification procedures. This protocol is applicable to mechanistic exploration and drug screening in neurodegenerative diseases and brain aging.

20.
Nutrients ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36986177

RESUMO

Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-ß (TGF-ß) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-ß. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Humanos , Animais , NAD/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Fator de Crescimento Transformador beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA