Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
2.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
3.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358770

RESUMO

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Assuntos
Alcaloides , Flavanonas , Sophora , Camundongos , Animais , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacologia , Flavanonas/química , Prenilação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Quimiocinas
4.
AAPS PharmSciTech ; 23(6): 187, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798907

RESUMO

Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.


Assuntos
Catequina , Absorção Cutânea , Disponibilidade Biológica , Pele/metabolismo , Chá/química , Chá/metabolismo
5.
J Nanobiotechnology ; 19(1): 48, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588861

RESUMO

BACKGROUND: Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To control a bacterial infection, an immune response is required, but this response might contribute to organ failure. Kidneys are one of the main organs affected by bacteremia. Combination therapies with antibacterial and anti-inflammatory effects may be beneficial in treating bacteremia. This study aimed to develop nanostructured lipid carriers (NLCs) loaded with ciprofloxacin and rolipram that exert a combination of anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-inflammatory effects. Retinol was incorporated into the nanoparticles to transport retinol-binding protein 4 (RBP4) to the kidneys, which abundantly express RBP receptors. The NLCs were fabricated by high-shear homogenization and sonication, and neutrophils were used as a model to assess their anti-inflammatory effects. Mice were injected with MRSA to establish a model of bacteremia with organ injury. RESULTS: The mean nanoparticle size and zeta potential of the NLCs were 171 nm and - 39 mV, respectively. Ciprofloxacin (0.05%, w/v) and rolipram (0.02%) achieved encapsulation percentages of 88% and 96%, respectively, in the nanosystems. The minimum bactericidal concentration of free ciprofloxacin against MRSA increased from 1.95 to 15.63 µg/ml when combined with rolipram, indicating a possible drug-drug interaction that reduced the antibacterial effect. Nanoparticle inclusion promoted the anti-MRSA activity of ciprofloxacin according to time-kill curves. The NLCs were found to be largely internalized into neutrophils and exhibited superior superoxide anion inhibition than free drugs. Retinol incorporation into the nanocarriers facilitated their efficient targeting to the kidneys. The NLCs significantly mitigated MRSA burden and elastase distribution in the organs of MRSA-infected animals, and the greatest inhibition was observed in the kidneys. Bacterial clearance and neutrophil infiltration suppression attenuated the bacteremia-induced cytokine overexpression, leading to an improvement in the survival rate from 22% to 67%. CONCLUSIONS: The dual role of our NLCs endowed them with greater efficacy in treating MRSA bacteremia than that of free drugs.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Lipídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Infecções Estafilocócicas/tratamento farmacológico , Animais , Bacteriemia/tratamento farmacológico , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Portadores de Fármacos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas , Rolipram/farmacologia , Sepse/tratamento farmacológico
6.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638757

RESUMO

While psoriasis is known as a T cell- and dendritic cell-driven skin inflammation disease, macrophages are also reported to play some roles in its development. However, the signaling pathway of activated macrophages contributing to psoriasis is not entirely understood. Thus, we aimed to explore the possible mechanisms of how macrophages initiate and sustain psoriasis. The differentiated THP1 cells, stimulated by imiquimod (IMQ), were utilized as the activated macrophage model. IMQ was also employed to produce psoriasis-like lesions in mice. A transcriptomic assay of macrophages revealed that the expressions of pro-inflammatory mediators and GDAP1L1 were largely increased after an IMQ intervention. The depletion of GDAP1L1 by short hairpin (sh)RNA could inhibit cytokine release by macrophages. GDAP1L1 modulated cytokine production by activating the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB pathways. Besides GDAP1L1, another mitochondrial fission factor, Drp1, translocated from the cytosol to mitochondria after IMQ stimulation, followed by the mitochondrial fragmentation according to the immunofluorescence imaging. Clodronate liposomes were injected into the mice to deplete native macrophages for examining the latter's capacity on IMQ-induced inflammation. The THP1 cells, with or without GDAP1L1 silencing, were then transplanted into the mice to monitor the deposition of macrophages. We found a significant THP1 accumulation in the skin and lymph nodes. The silencing of GDAP1L1 in IMQ-treated animals reduced the psoriasiform severity score from 8 to 2. After depleting GDAP1L1, the THP1 recruitment in the lymph nodes was decreased by 3-fold. The skin histology showed that the GDAP1L1-mediated macrophage activation induced neutrophil chemotaxis and keratinocyte hyperproliferation. Thus, mitochondrial fission can be a target for fighting against psoriatic inflammation.


Assuntos
Imiquimode/efeitos adversos , Macrófagos/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Psoríase , Animais , Feminino , Humanos , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/metabolismo , Psoríase/patologia , Células THP-1
7.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770799

RESUMO

Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Pele/microbiologia , Nanomedicina Teranóstica , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas/química , Dermatopatias/tratamento farmacológico , Dermatopatias/etiologia , Dermatopatias/patologia , Resultado do Tratamento
8.
J Nanobiotechnology ; 18(1): 25, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005196

RESUMO

BACKGROUND: Oleic acid (OA) is reported to show anti-inflammatory activity toward activated neutrophils. It is also an important material in nanoparticles for increased stability and cellular internalization. We aimed to evaluate the anti-inflammatory activity of injectable OA-based nanoparticles for treating lung injury. Different sizes of nanocarriers were prepared to explore the effect of nanoparticulate size on inflammation inhibition. RESULTS: The nanoparticles were fabricated with the mean diameters of 105, 153, and 225 nm. The nanocarriers were ingested by isolated human neutrophils during a 5-min period, with the smaller sizes exhibiting greater uptake. The size reduction led to the decrease of cell viability and the intracellular calcium level. The OA-loaded nanosystems dose-dependently suppressed the superoxide anion and elastase produced by the stimulated neutrophils. The inhibition level was comparable for the nanoparticles of different sizes. In the ex vivo biodistribution study, the pulmonary accumulation of nanoparticles increased following the increase of particle size. The nanocarriers were mainly excreted by the liver and bile clearance. Mice were exposed to intratracheal lipopolysaccharide (LPS) to induce acute respiratory distress syndrome (ARDS), like lung damage. The lipid-based nanocarriers mitigated myeloperoxidase (MPO) and cytokines more effectively as compared to OA solution. The larger nanoparticles displayed greater reduction on MPO, TNF-α, and IL-6 than the smaller ones. The histology confirmed the decreased pulmonary neutrophil recruitment and lung-architecture damage after intravenous administration of larger nanoparticles. CONCLUSIONS: Nanoparticulate size, an essential property governing the anti-inflammatory effect and lung-injury therapy, had different effects on activated neutrophil inhibition and in vivo therapeutic efficacy.


Assuntos
Anti-Inflamatórios/química , Lipídeos/química , Nanocápsulas/química , Neutrófilos/efeitos dos fármacos , Ácido Oleico/química , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Lipopolissacarídeos/química , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/efeitos dos fármacos , Elastase Pancreática/química , Tamanho da Partícula , Peroxidase/metabolismo , Superóxidos/química , Propriedades de Superfície , Distribuição Tecidual , Resultado do Tratamento
9.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287318

RESUMO

Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia. Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in ß-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes, excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related complications in many organ systems. Antidiabetic drugs have been approved for the treatment of hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have the risk of side effects, such as nausea or an upset stomach. A wide range of active components, derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids may act as alternative sources of antidiabetic agents. They are usually attributed to improvements in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological actions make plant-based preparations the key player of all available treatments. Based on the study of therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in humans and have the advantages of ease of genetic manipulation, a short breeding span, and access to physiological and invasive testing. In this review, we summarize the pathophysiological status of T2DM rat models and focus on several bioactive compounds from herbal medicine with different functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future approach in treating diabetes with natural drugs.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Hiperglicemia/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Ratos
10.
FASEB J ; : fj201800354, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29920221

RESUMO

Psoriasis is an inflammatory autoimmune skin disorder possessing a complex etiology related to genetic and environmental triggers. Keratinocytes show a potential role for the origin of psoriasis. In this study, we estimated the efficiency of 2 anthranilate derivatives-(E)-4-( N-{2-[1-(hydroxyimino)ethyl]phenyl}sulfamoyl)phenyl pivalate (HFP031) and butyl 2-[2-(2-fluorophenyl)acetamido]benzoate (HFP034)-on psoriasis amelioration in a mouse model. The results showed that topical treatment with both compounds could attenuate epidermal thickness and scaling in an imiquimod (IMQ)-induced psoriasis mouse model via decreased expression of cytokines and chemokines [C-X-C chemokine ligand (CXCL)1 and CXCL2], leading to the reduction of neutrophilic abscess in the skin. The in vivo cutaneous absorption of HFP034 was 7.6-fold greater than that of HFP031. Both compounds caused negligible irritation on healthy mouse skin. In addition, we examined the effect of the anthranilate derivatives on chemokine expression in IMQ-treated HaCaT keratinocytes. Our results elucidated a mechanism for anti-inflammatory activity of HFP034 that involved the elevation of intracellular cAMP concentration, suppression of NF-κB activity, and attenuation of neutrophil chemoattractant expression. These results suggest that HFP034 could increase the cutaneous concentration of cAMP to suppress neutrophil infiltration into the skin. Topically applied HFP034 may demonstrate a potential for future clinical application as a novel therapy for psoriasis treatment.-Lin, Z.-C., Hsieh, P.-W., Hwang, T.-L., Chen, C.-Y., Sung, C. T., Fang, J.-Y. Topical application of anthranilate derivatives ameliorates psoriatic inflammation in a mouse model by inhibiting keratinocyte-derived chemokine expression and neutrophil infiltration.

11.
J Nanobiotechnology ; 17(1): 7, 2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30660179

RESUMO

BACKGROUND: The rationale of this study is to combine the merits of both albumin nanoparticles and quantum dots (QDs) in improved drug tumor accumulation and strong fluorescence imaging capability into one carrier. However, premature drug release from protein nanoparticles and high toxicity of QDs due to heavy metal leakage are among challenging hurdles. Following this platform, we developed cancer nano-theranostics by coupling biocompatible albumin backbone to CdTe QDs and mannose moieties to enhance tumor targeting and reduce QDs toxicity. The chemotherapeutic water soluble drug pemetrexed (PMT) was conjugated via tumor-cleavable bond to the albumin backbone for tumor site-specific release. In combination, the herbal hydrophobic drug resveratrol (RSV) was preformulated as phospholipid complex which enabled its physical encapsulation into albumin nanoparticles. RESULTS: Albumin-QDs theranostics showed enhanced cytotoxicity and internalization into breast cancer cells that could be traced by virtue of their high fluorescence quantum yield and excellent imaging capacity. In vivo, the nanocarriers demonstrated superior anti-tumor effects including reduced tumor volume, increased apoptosis, and inhibited angiogenesis in addition to non-immunogenic response. Moreover, in vivo bioimaging test demonstrated excellent tumor-specific accumulation of targeted nanocarriers via QDs-mediated fluorescence. CONCLUSION: Mannose-grafted strategy and QD-fluorescence capability were beneficial to deliver albumin nanocarriers to tumor tissues and then to release the anticancer drugs for killing cancer cells as well as enabling tumor imaging facility. Overall, we believe albumin-QDs nanoplatform could be a potential nano-theranostic for bioimaging and targeted breast cancer therapy.


Assuntos
Albuminas , Antineoplásicos , Neoplasias da Mama/terapia , Pontos Quânticos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Terapia Combinada , Quimioterapia Combinada , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Imagem Óptica , Fitoterapia
12.
Int J Mol Sci ; 20(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137673

RESUMO

Natural products or herbs can be used as an effective therapy for treating psoriasis, an autoimmune skin disease that involves keratinocyte overproliferation. It has been demonstrated that phytomedicine, which is used for psoriasis patients, provides some advantages, including natural sources, a lower risk of adverse effects, and the avoidance of dissatisfaction with conventional therapy. The herbal products' structural diversity and multiple mechanisms of action have enabled the synergistic activity to mitigate psoriasis. In recent years, the concept of using natural products as antiproliferative agents in psoriasis treatment has attracted increasing attention in basic and clinical investigations. This review highlights the development of an apoptotic or antiproliferatic strategy for natural-product management in the treatment of psoriasis. We systematically introduce the concepts and molecular mechanisms of keratinocyte-proliferation inhibition by crude extracts or natural compounds that were isolated from natural resources, especially plants. Most of these studies focus on evaluation through an in vitro keratinocyte model and an in vivo psoriasis-like animal model. Topical delivery is the major route for the in vivo or clinical administration of these natural products. The potential use of antiproliferative phytomedicine on hyperproliferative keratinocytes suggests a way forward for generating advances in the field of psoriasis therapy.


Assuntos
Produtos Biológicos/uso terapêutico , Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Animais , Apoptose , Produtos Biológicos/farmacologia , Proliferação de Células , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Psoríase/metabolismo
13.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877924

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) is upregulated by hypoxia and is a crucial stimulator for choroidal neovascularization (CNV) in age-related macular degeneration and pathologic myopia, as well as retinal neovascularization in proliferative diabetic retinopathy. Retinal and choroidal endothelial cells play key roles in the development of retinal and CNV, and subsequent fibrosis. At present, the effects of gold nanoparticles (AuNPs) on the VEGF-induced choroid-retina endothelial (RF/6A) cells are still unknown. In our study, we investigated the effects of AuNPs on RF/6A cell viabilities and cell adhesion to fibronectin, a major ECM protein of fibrovascular membrane. Furthermore, the inhibitory effects of AuNPs on RF/6A cell migration induced by VEGF and its signaling were studied. METHODS: The cell viability assay was used to determine the viability of cells treated with AuNPs. The migration of RF/6A cells was assessed by the Transwell migration assay. The cell adhesion to fibronectin was examined by an adhesion assay. The VEGF-induced signaling pathways were determined by western blotting. RESULTS: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay revealed no cytotoxicity of AuNPs on RF/6A cells. AuNPs inhibited VEGF-induced RF/6A cell migration in a concentration-dependent manner but showed no significant effects on RF/6A cell adhesion to fibronectin. Inhibitory effects of AuNPs on VEGF-induced Akt/eNOS were found. CONCLUSIONS: These results suggest that AuNPs are an effective inhibitor of VEGF-induced RF/6A cell migration through the Akt/eNOS pathways, but they have no effects on their cell viabilities and cell adhesion to fibronectin.


Assuntos
Movimento Celular/efeitos dos fármacos , Corioide/metabolismo , Células Endoteliais/metabolismo , Ouro , Nanopartículas Metálicas/química , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Linhagem Celular , Corioide/citologia , Células Endoteliais/citologia , Ouro/química , Ouro/farmacologia , Macaca mulatta , Retina/citologia
14.
Cell Physiol Biochem ; 50(3): 883-892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355952

RESUMO

BACKGROUND/AIMS: 2-O-methylmagnolol (MM1), a derivative of magnolol bearing one methoxy moiety, has been shown to display improved anti-tumor activity against skin cancers. In this study, we examined the anti-tumor effects of magnolol and MM1 on oral squamous cell carcinoma (OSCC). METHODS: Trypane blue staining and clonogenic assays were performed to determine the cytotoxic effects of magnolol and MM1 in OSCC cells. Migration and matrigel invasion assays were carried out to examine the metastasis effects of magnolol and MM1 in OSCC cells. IL6-stimulation, Western blot, and immunohistochemistry were used to investigate the IL-6/STAT3 signaling and apoptosis. A bioluminescent mouse model of orthotopically implanted SAS cells was used to determine the anti-tumor activity of MM1 in vivo. RESULTS: MM1 displays greater activity than magnolol on affecting the cytotoxicity, migration, and invasion of OSCC cells cultured in vitro. The improved anti-tumor activity of MM1 was shown to associate with its greater activity to inhibit STAT3 signaling and to induce apoptosis in the OSCC. In addition, we presented evidence that MM1 is effective in inhibiting the growth of orthotopic implanted OSCC cells in vivo. CONCLUSION: Our data indicate that MM1 displays greater anti-tumor activity than magnolol in OSCC and is an attractive agent to be further explored for its potential clinical application.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/uso terapêutico , Caderinas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Lignanas/química , Lignanas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fator de Transcrição STAT3/metabolismo , Transplante Heterólogo , Vimentina/metabolismo
15.
Pharm Res ; 35(7): 128, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700662

RESUMO

PURPOSE: Most of the investigations into laser-assisted skin permeation have used the intact skin as the permeation barrier. Whether the laser is effective in improving cutaneous delivery via barrier-defective skin is still unclear. METHODS: In this study, ablative (Er:YAG) and non-ablative (Er:glass) lasers were examined for the penetration of peptide and siRNA upon topical application on in vitro skin with a healthy or disrupted barrier. RESULTS: An enhanced peptide flux (6.9 fold) was detected after tape stripping of the pig stratum corneum (SC). A further increase of flux to 11.7 fold was obtained after Er:YAG laser irradiation of the SC-stripped skin. However, the application of Er:glass modality did not further raise the flux via the SC-stripped skin. A similar trend was observed in the case of psoriasiform skin. Conversely, the flux was enhanced 3.7 and 2.6 fold after treatment with the Er:YAG and the Er:glass laser on the atopic dermatitis (AD)-like skin. The 3-D skin structure captured by confocal microscopy proved the distribution of peptide and siRNA through the microchannels and into the surrounding tissue. CONCLUSIONS: The fractional laser was valid for ameliorating macromolecule permeation into barrier-disrupted skin although the enhancement level was lower than that of normal skin.


Assuntos
Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Lasers de Estado Sólido , Psoríase/metabolismo , Absorção Cutânea/fisiologia , Administração Cutânea , Animais , Animais Recém-Nascidos , Dermatite Atópica/tratamento farmacológico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Psoríase/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/efeitos da radiação , Suínos
16.
J Nanobiotechnology ; 16(1): 35, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602314

RESUMO

BACKGROUND: Cilomilast is a phosphodiesterase 4 (PDE4) inhibitor for treating inflammatory lung diseases. This agent has a narrow therapeutic index with significant adverse effects on the nervous system. This study was conducted to entrap cilomilast into PEGylated phosphatidylcholine-rich niosomes (phosphatiosomes) to improve pulmonary delivery via the strong affinity to pulmonary surfactant film. Neutrophils were used as a cell model to test the anti-inflammatory activity of phosphatiosomes. In an in vivo approach, mice were given lipopolysaccharide to produce acute lung injury. The surface charge in phosphatiosomes that influenced the anti-inflammatory potency is discussed in this study. RESULTS: The average diameter of the phosphatiosomes was about 100 nm. The zeta potential of anionic and cationic nanovesicles was - 35 and 32 mV, respectively. Cilomilast in both its free and nanocapsulated forms inhibited superoxide anion production but not elastase release in activated neutrophils. Cationic phosphatiosomes mitigated calcium mobilization far more effectively than the free drug. In vivo biodistribution evaluated by organ imaging demonstrated a 2-fold ameliorated lung uptake after dye encapsulation into the phosphatiosomes. The lung/brain distribution ratio increased from 3 to 11 after nanocarrier loading. The intravenous nanocarriers deactivated the neutrophils in ALI, resulting in the elimination of hemorrhage and alveolar wall damage. Only cationic phosphatiosomes could significantly suppress IL-1ß and TNF-α in the inflamed lung tissue. CONCLUSIONS: These results suggest that phosphatiosomes should further be investigated as a potential nanocarrier for the treatment of pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Ácidos Cicloexanocarboxílicos/uso terapêutico , Nanopartículas/química , Neutrófilos/patologia , Nitrilas/uso terapêutico , Eletricidade Estática , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Cálcio/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Humanos , Lipopolissacarídeos , Lipossomos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Nitrilas/farmacologia , Tamanho da Partícula , Fosfatidilcolinas , Distribuição Tecidual/efeitos dos fármacos
17.
Nanomedicine ; 14(2): 215-225, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29128664

RESUMO

The aim of this study was to develop PEGylated phosphatidylcholine (PC)-rich nanovesicles (phosphatiosomes) carrying ciprofloxacin (CIPX) for lung targeting to eradicate extracellular and intracellular methicillin-resistant Staphylococcus aureus (MRSA). Soyaethyl morphonium ethosulfate (SME) was intercalated in the nanovesicle surface with the dual goals of achieving strengthened bactericidal activity of CIPX-loaded phosphatiosomes and delivery to the lungs. The isothermal titration calorimetry (ITC) results proved the strong association of SME phosphatiosomes with pulmonary surfactant. We demonstrated a superior anti-MRSA activity of SME phosphatiosomes compared to plain phosphatiosomes and to free CIPX. A synergistic effect of CIPX and SME nanocarriers was found in the biofilm eradication. SME phosphatiosomes were readily engulfed by the macrophages, restricting the intracellular MRSA count by 1-2 log units. SME phosphatiosomes efficiently accumulated in the lungs after intravenous injection. In a rat model of lung infection, the MRSA burden in the lungs could be decreased by 8-fold after SME nanosystem application.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/administração & dosagem , Pneumonia/tratamento farmacológico , Surfactantes Pulmonares/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Administração Intravenosa , Animais , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/administração & dosagem , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Modelos Animais , Nanopartículas/química , Fosfatidilcolinas/química , Pneumonia/microbiologia , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/microbiologia
18.
Mar Drugs ; 16(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061538

RESUMO

Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.


Assuntos
Ácidos Graxos/farmacologia , Óleos de Peixe/química , Envelhecimento da Pele/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Cosméticos/farmacologia , Cosméticos/uso terapêutico , Suplementos Nutricionais , Ácidos Graxos/uso terapêutico , Óleos de Peixe/farmacologia , Óleos de Peixe/uso terapêutico , Peixes , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Dermatopatias/prevenção & controle , Raios Ultravioleta/efeitos adversos
19.
Int J Mol Sci ; 19(10)2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30301277

RESUMO

Several thalidomide derivatives were synthesized and evaluated for their anti-inflammatory activity. Introduction of the benzyl group to the parent thalidomide is unfavorable in which 2-(1-benzyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (4a) was inactivated. However, the inhibitory activities on TNF-α and IL-6 expression in HaCaT cells were improved by the substitution of a chloro- or methoxy- group at the phenyl position of 4a. The IL-6 inhibitory activity decreased in an order of 5c (69.44%) > 4c (48.73%) > 6c (3.19%) indicating the 3-substituted derivative is more active than the 4-substituted counterpart, which in turn is more active than the 2-substituted counterpart. Among them, 2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione (5c) was found to inhibit TNF-α and IL-6 expression in HaCaT cells with a higher potency than thalidomide and no significant cell cytotoxicity was detected at 10 µM. In psoriasis, Compound 5c reduced IL-6, IL-8, IL-1ß and IL-24 in imiquimod-stimulated models. Our results indicated that compound 5c is a potential lead of novel anti-psoriasis agents. Structural optimization of compound 5c and its in vivo assay are ongoing.


Assuntos
Anti-Inflamatórios/síntese química , Fármacos Dermatológicos/síntese química , Queratinócitos/efeitos dos fármacos , Talidomida/análogos & derivados , Anti-Inflamatórios/farmacologia , Linhagem Celular , Fármacos Dermatológicos/farmacologia , Humanos , Interleucinas/metabolismo , Queratinócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Arch Microbiol ; 199(6): 811-825, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28597303

RESUMO

Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/fisiologia , Doenças Transmitidas por Alimentos/microbiologia , Animais , Surtos de Doenças , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/prevenção & controle , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA