Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(5): 691-700, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32759964

RESUMO

Myocardial infarction (MI) leads to the loss of cardiomyocytes, left ventricle dilation and cardiac dysfunction, eventually developing into heart failure. Mzb1 (Marginal zone B and B1 cell specific protein 1) is a B-cell-specific and endoplasmic reticulum-localized protein. Mzb1 is an inflammation-associated factor that participates a series of inflammatory processes, including chronic periodontitis and several cancers. In this study we investigated the role of Mzb1 in experimental models of MI. MI was induced in mice by ligation of the left descending anterior coronary artery, and in neonatal mouse ventricular cardiomyocytes (NMVCs) by H2O2 treatment in vitro. We showed that Mzb1 expression was markedly reduced in the border zone of the infarct myocardium of MI mice and in H2O2-treated NMVCs. In H2O2-treated cardiomyocytes, knockdown of Mzb1 decreased mitochondrial membrane potential, impaired mitochondrial function and promoted apoptosis. On contrary, overexpression of Mzb1 improved mitochondrial membrane potential, ATP levels and mitochondrial oxygen consumption rate (OCR), and inhibited apoptosis. Direct injection of lentiviral vector carrying Len-Mzb1 into the myocardial tissue significantly improved cardiac function and alleviated apoptosis in MI mice. We showed that Mzb1 overexpression significantly decreased the levels of Bax/Bcl-2 and cytochrome c and improved mitochondrial function in MI mice via activating the AMPK-PGC1α pathway. In addition, we demonstrated that Mzb1 recruited the macrophages and alleviated inflammation in MI mice. We conclude that Mzb1 is a crucial regulator of cardiomyocytes after MI by improving mitochondrial function and reducing inflammatory signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.


Assuntos
Inflamação/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Regulação para Baixo , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Eur J Pharmacol ; 881: 173131, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450177

RESUMO

Cardiac conduction delay may occur as a common complication of several cardiac diseases. A few therapies and drugs have a good effect on cardiac conduction delay. Metformin (Met) has a protective effect on the heart. This study's aim was to investigate whether Met could ameliorate cardiac conduction delay and its potential mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI) mouse models were used. Mice were administered with Met in an intragastric manner. We found that the expression of miR-1 was significantly up-regulated in H2O2 treated cardiomyocytes as well as in TG and MI mice. The protein levels of inwardly rectifying potassium channel 2.1 (Kir2.1) and Connexin43 (CX43) were down-regulated both in cardiomyocytes treated with H2O2 as well as cardiac tissues of TG and MI mice, as compared to their controls. Furthermore, the PR and QT intervals were prolonged, action potential duration (APD) was delayed, and conduction velocity (CV) was reduced, with upregulation of miR-1 in the hearts. In the meanwhile, intercalated disc injuries were found in the hearts of MI mice. Interestingly, Met can noticeably inhibit miR-1 upregulation and attenuate the changes mentioned above. Taken together, this suggested that Met could play an important role in improving cardiac conduction delay through inhibition of miR-1 expression. Our study proposes that Met is a potential candidate for the treatment of cardiac conduction delay and provides a new idea of treating arrhythmia with a drug.


Assuntos
Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/prevenção & controle , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Metformina/farmacologia , MicroRNAs/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transdução de Sinais
3.
Mol Ther Nucleic Acids ; 20: 841-850, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32464547

RESUMO

Acute myocardial infarction (AMI) is the leading cause of death worldwide. Identifying the pathways that block cardiac cell death is a therapeutic strategy for ischemic heart disease. We found that long noncoding RNA (lncRNA) myocardial infarction-regulatory factor (MIRF) promoted ischemic myocardial injury by regulating autophagy through targeting miR-26a. However, the role of MIRF-miR-26a in apoptosis during AMI has not been delineated. In this study, we found the downregulation of miR-26a both in the heart of myocardial infarction (MI) mice and in H2O2-treated cardiomyocytes. miR-26a silencing resulted in apoptosis, whereas overexpression of miR-26a attenuated H2O2-induced apoptosis through promoting mitochondrial ATP content and increasing mitochondrial membrane potential (MMP). Moreover, forced expression of miR-26a protected against MI-induced cardiac injury and attenuated cardiac apoptosis. Further studies showed that miR-26a inhibited apoptosis through regulation of Bak1. Furthermore, MIRF decreased ATP content and MMP through regulating miR-26a, which then promoted the cardiomyocyte apoptosis. In contrast, deficiency of MIRF promoted mitochondrial ATP content and increased MMP, and then inhibited MI or H2O2-induced cardiac apoptosis, which was abolished by miR-26a inhibitor. Taken together, these results suggested that MIRF contributed to cardiomyocyte apoptosis through modulating Bak1 by regulation of miR-26a, which can be a potential therapeutic target for the treatment of ischemic heart disease.

4.
Exp Mol Med ; 51(7): 1-12, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273199

RESUMO

Pulmonary fibrosis is a progressive disease characterized by epithelial cell damage, fibroblast proliferation, excessive extracellular matrix (ECM) deposition, and lung tissue scarring. Melatonin, a hormone produced by the pineal gland, plays an important role in multiple physiological and pathological responses in organisms. However, the function of melatonin in the development of bleomycin-induced pulmonary injury is poorly understood. In the present study, we found that melatonin significantly decreased mortality and restored the function of the alveolar epithelium in bleomycin-treated mice. However, pulmonary function mainly depends on type II alveolar epithelial cells (AECIIs) and is linked to mitochondrial integrity. We also found that melatonin reduced the production of reactive oxygen species (ROS) and prevented apoptosis and senescence in AECIIs. Luzindole, a nonselective melatonin receptor antagonist, blocked the protective action of melatonin. Interestingly, we found that the expression of apelin 13 was significantly downregulated in vitro and in vivo and that this downregulation was reversed by melatonin. Furthermore, ML221, an apelin inhibitor, disrupted the beneficial effects of melatonin on alveolar epithelial cells. Taken together, these results suggest that melatonin alleviates lung injury through regulating apelin 13 to improve mitochondrial dysfunction in the process of bleomycin-induced pulmonary injury.


Assuntos
Apelina/metabolismo , Lesão Pulmonar/prevenção & controle , Melatonina/farmacologia , Fibrose Pulmonar/prevenção & controle , Receptores de Melatonina/antagonistas & inibidores , Triptaminas/farmacologia , Animais , Apelina/genética , Apoptose/efeitos dos fármacos , Bleomicina/efeitos adversos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibrose Pulmonar/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA