RESUMO
Neural stem/progenitor cells (NSPCs) are a promising candidate for the cell-replacement therapy after central nervous system (CNS) injury. However, the short of sufficient NSPCs migration and integration into the lesions is an essential challenge for cell-based therapy after CNS injury due to the disturbance of local environmental homeostasis. Chondroitin sulfate proteoglycan (CSPG) is obviously accumulated at the lesions and destroyed local homeostasis after CNS injury. The previous study has demonstrated that the CSPG is a dominating ingredient inhibiting axonal regrowth of newly born neurons after CNS injury. NSPCs, a strain of special neural subtypes, hold the capacity of leading processes formation to regulate NSPCs migration, which has the same mechanism as axonal regrowth. Hence, it is worth investigating the effect of CSPG on NSPCs migration and its underlying mechanism. Here, different concentration of CSPG was used to evaluate its effect on NSPCs migration. The results showed that the CSPG suppressed NSPCs migration in a dose-dependent manner from 10 to 80 µg/mL with phase-contrast microscopy after 24 hours. Meanwhile, transwell assays were performed to certify the above results. Our data indicated that the 40 µg/mL CSPG obviously suppressed NSPCs migration via decreasing filopodia formation using immunofluorescence staining. Furthermore, data indicated that the 40 µg/mL CSPG upregulated protein tyrosine phosphatase receptor σ (PTPσ) expression and decreased α-actinin4 (ACTN4) expression through immunofluorescence, reverse transcription polymerase chain reaction, and Western blot assays. While the inhibitory effect was attenuated using PTPσ-specific small interfering RNA. In addition, data demonstrated that the 40 µg/mL CSPG facilitated NSPCs differentiation into glial ï¬brillary acidic protein-positive cells and inhibited NSPCs directing into MAP2- and MBP-positive cells. Collectively, these data demonstrated that the CSPG suppressed NSPCs migration through PTPσ/ACTN4 signaling pathway. Meanwhile, CSPG facilitated NSPCs differentiation into astrocytes and inhibited NSPCs directing into neurons and oligodendrocytes.
RESUMO
Only a small proportion of patients with triple-negative breast cancer benefit from immune checkpoint inhibitor (ICI) targeting PD-1/PD-L1 signaling in combination with chemotherapy. Here, we discovered that therapeutic response to ICI plus paclitaxel was associated with subcellular redistribution of PD-L1. In our immunotherapy cohort of ICI in combination with nab-paclitaxel, tumor samples from responders showed significant distribution of PD-L1 at mitochondria, while non-responders showed increased accumulation of PD-L1 on tumor cell membrane instead of mitochondria. Our results also revealed that the distribution pattern of PD-L1 was regulated by an ATAD3A-PINK1 axis. Mechanistically, PINK1 recruited PD-L1 to mitochondria for degradation via a mitophagy pathway. Importantly, paclitaxel increased ATAD3A expression to disrupt proteostasis of PD-L1 by restraining PINK1-dependent mitophagy. Clinically, patients with tumors exhibiting high expression of ATAD3A detected before the treatment with ICI in combination with paclitaxel had markedly shorter progression-free survival compared with those with ATAD3A-low tumors. Preclinical results further demonstrated that targeting ATAD3A reset a favorable antitumor immune microenvironment and increased the efficacy of combination therapy of ICI plus paclitaxel. In summary, our results indicate that ATAD3A serves not only as a resistant factor for the combination therapy of ICI plus paclitaxel through preventing PD-L1 mitochondrial distribution, but also as a promising target for increasing the therapeutic responses to chemoimmunotherapy.
Assuntos
Antígeno B7-H1 , Mitofagia , Humanos , ATPases Associadas a Diversas Atividades Celulares , Imunoterapia , Proteínas de Membrana , Mitocôndrias , Proteínas Mitocondriais , Paclitaxel/farmacologia , Proteínas QuinasesRESUMO
Brain lesions can cause neural stem cells to activate, proliferate, differentiate, and migrate to the injured area. However, after traumatic brain injury, brain tissue defects and microenvironment changes greatly affect the survival and growth of neural stem cells; the resulting reduction in the number of neural stem cells impedes effective repair of the injured area. Melatonin can promote the survival, proliferation, and differentiation of neural stem cells under adverse conditions such as oxidative stress or hypoxia that can occur after traumatic brain injury. Therefore, we investigated the therapeutic effects of melatonin combined with neural stem cells on traumatic brain injury in rats. First, in vitro studies confirmed that melatonin promoted the survival of neural stem cells deprived of oxygen and glucose. Then, we established a three-dimensional Matrigel-based transplantation system containing melatonin and neural stem cells and then used it to treat traumatic brain injury in rats. We found that treatment with the Matrigel system containing melatonin and neural stem cells decreased brain lesion volume, increased the number of surviving neurons, and improved recovery of neurological function compared with treatment with Matrigel alone, neural stem cells alone, Matrigel and neural stem cells combined, and Matrigel and melatonin combined. Our findings suggest that the three-dimensional Matrigel-based transplantation system containing melatonin and neural stem cells is a potential treatment for traumatic brain injury.
RESUMO
G protein-coupled estrogen receptor 1 (GPER1, also known as GPR30) has been reported to play a wide range of function in the central nervous system (CNS). However, whether GPER1 is expressed by neural stem/progenitor cells (NSPCs) and its role has not been established. Here, we found the expression of GPER1 in mouse-derived NSPCs via western blot and immunofluorescent staining. Moreover, we revealed that specific activation of GPER1 by the agonist G1 decreased the proliferation of NSPCs in a dose-dependent manner. The neurosphere formation assay and Ki67 staining further demonstrated that activation of GPER1 inhibited the proliferation of NSPCs. Additionally, the inhibitory effect of G1 on the proliferation of NSPCs could be blocked by the specific GPER1 antagonist G15. Intriguingly, ERK pathway was involved in the negative effect of GPER1 on the proliferation of NSPCs, because the phosphorylation level of ERK in NSPCs was remarkably decreased during G1 treatment. However, the antagonist G15 reversed the down-regulated level of p-ERK. Knock-down GPER1 also reversed the inhibitory effect of G1 on NSPCs proliferation. Together, our results provide the first evidence that GPER1 is expressed by NSPCs and its activation negatively modulates the proliferation of NSPCs, highlighting the importance of GPER1 in regulating NSPC behaviors.