RESUMO
A gold nanoparticle (AuNP) based immunochromatographic assay strip is a valuable tool for monitoring chemicals in foods. However, the sensitive ICA strip for SBT is rarely reported due to the fact that monoclonal antibodies (mAbs) against SBT with high affinity are commercially unavailable. Herein, a monoclonal antibody against SBT was prepared through a designed hapten with a carboxyl end-capped space arm. The obtained mAb showed high affinity for SBT and N-desmethylsibutramine, a metabolite of SBT. Furthermore, a series of core-shell NPs, polydopamine (PDA) coated AuNPs (PDA/AuNPs) with controlled shell thickness and packing density were synthesized. The obtained PDA/AuNP-mAb conjugate demonstrated high tolerance to salt and good stability in a wide pH range, which is beneficial for improving the matrix interference common in ICA. As a result, PDA/AuNP-based ICA could quantify SBT in the range of 3.39-69.60 ng mL-1 with a limit of detection (LOD) of 0.98 ng mL-1. This novel ICA improved the sensitivity of the traditional AuNP-based ICA by nearly 12 times. Method validation was conducted with spiked samples of slimming food and human serum and compared with HPLC-MS/MS. Consistent results indicated that high sensitivity, accuracy, and reliability of the PDA/AuNP-based ICA approach were achieved. To the best of our knowledge, this study reported the most sensitive immunoassay for SBT thus far.
Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Reprodutibilidade dos Testes , Colorimetria , Espectrometria de Massas em Tandem , Nanopartículas Metálicas/química , Imunoensaio/métodos , Limite de Detecção , DietaRESUMO
Melamine (MEL), enrofloxacin (ENR), sulfamethazine (SMZ), tetracycline (TC), and aflatoxin M1 (AFM1) are the main chemical contaminants in milk. It is necessary to detect these miscellaneous chemical contaminants in milk synchronously to ensure the safety of the milk. In this study, a multiple lateral flow immunoassay (LFIA) was developed for the detection of MEL, ENR, SMZ, TC, and AFM1 in milk. Under optimal experimental conditions, the cutoff values were 25 ng/mL for MEL, 1 ng/mL for ENR, 2.5 ng/mL for SMZ, 2.5 ng/mL for TC, and 0.25 ng/mL for AFM1 in milk samples. The limits of detection of LFIA were 0.173 ng/mL for MEL, 0.078 ng/mL for ENR, 0.059 ng/mL for SMZ, 0.082 ng/mL for TC, and 0.0064 ng/mL for AFM1. The recovery rates of LFIA in milk were 83.2-104.4% for MEL, 76.5-127.3% for ENR, 96.8-113.5% for SMZ, 107.1-166.6% for TC, and 93.5-130.3% for AFM1. The coefficients of variation were all less than 15%. As a whole, the developed multiple lateral flow immunoassay showed potential as a highly reliable and excellent tool for the rapid and sensitive screening of MEL, ENR, SMZ, TC, and AFM1 in milk.
Assuntos
Leite , Sulfametazina , Animais , Leite/química , Imunoensaio/veterinária , Sulfametazina/análise , Antibacterianos , Enrofloxacina , Tetraciclina , Aflatoxina M1/análise , Contaminação de Alimentos/análiseRESUMO
In this study, we develop a competitive ratiometric fluorescent lateral flow immunoassay (CRF-LFIA) based on dual emission fluorescence signal, which has great advantage in visual and quantitative detection of Chlorothalonil (CTN). Red-emitted fluorescent magnetic nanobeads (FMNBs) and green-emitted aggregation-induced emission fluorescent microsphere (AIEFM) are synthesized and conjugated to antibodies and antigens respectively, resulting in competitive binding with the analyte. The ratiometric fluorescence signal which comes from the overlap of these two fluorescence emissions. FMNBs probes also provide immunomagnetic separation (IMS) to enrich the analysts and resist complex matrix effects. This strip generates a visually discernible yellow-to-green fluorescence color change in the presence of CTN (2 ng/mL), which could be incisively observed by naked eye. Moreover, the limit of detection (LOD) reached 0.152 ng/mL by measurement of color (Red-Green-Blue, RGB) signals. Method validation shows a good correlation between CRF-LFIA and LC-MS/MS.
Assuntos
Corantes Fluorescentes , Nitrilas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Imunoensaio/métodos , Limite de DetecçãoRESUMO
As kanamycin (KAN) residue in animal products is harmful to consumers, a rapid and sensitive method for KAN detection needs to be established. KAN monoclonal antibody (KAN-mAb, 1D11) with the half maximal inhibitory concentration of 1.16 ng/mL was prepared in this study. A one-pot method was used to synthesize Fe3+-chelated polydopamine nanospheres (Fe@PDANs) with excellent characteristics of strong light absorption. The novel label of Fe@PDANs and KAN-mAb was used to develop a lateral flow immunoassay (LFIA) for the sensitive detection of KAN. The limit of detection of the Fe@PDANs-based LFIA (Fe@PDANs-LFIA) for KAN was 0.0191 ng/mL, which was 2.75 times lower than PDANs-based LFIA. Furthermore, the Fe@PDANs-LFIA was successfully applied to detect KAN in pork, milk, and honey samples, with recoveries ranging from 93.75% to 113.80% (coefficient of variation < 10%). Therefore, Fe@PDANs have potential for the detection of analytes in LFIA.