Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Cell ; 4(4): 575-85, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12689595

RESUMO

BAK is a pro-apoptotic BCL-2 family protein that localizes to mitochondria. Here we evaluate the function of BAK in several mouse models of neuronal injury including neuronotropic Sindbis virus infection, Parkinson's disease, ischemia/stroke, and seizure. BAK promotes or inhibits neuronal death depending on the specific death stimulus, neuron subtype, and stage of postnatal development. BAK protects neurons from excitotoxicity and virus infection in the hippocampus. As mice mature, BAK is converted from anti- to pro-death function in virus-infected spinal cord neurons. In addition to regulating cell death, BAK also protects mice from kainate-induced seizures, suggesting a possible role in regulating synaptic activity. BAK can alter neurotransmitter release in a direction consistent with its protective effects on neurons and mice. These findings suggest that BAK inhibits cell death by modifying neuronal excitability.


Assuntos
Apoptose/genética , Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/virologia , Doenças do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Vetores Genéticos/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipocampo/virologia , Ácido Caínico , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/patologia , Neurônios/virologia , Neurotoxinas/genética , Neurotoxinas/metabolismo , Estrutura Terciária de Proteína/genética , Sindbis virus/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Proteína Killer-Antagonista Homóloga a bcl-2
2.
J Neurosci ; 23(23): 8423-31, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12968005

RESUMO

BCL-2 family proteins are known to regulate cell death during development by influencing the permeability of mitochondrial membranes. The anti-apoptotic BCL-2 family protein BCL-xL is highly expressed in the adult brain and localizes to mitochondria in the presynaptic terminal of the adult squid stellate ganglion. Application of recombinant BCL-xL through a patch pipette to mitochondria inside the giant presynaptic terminal triggered multiconductance channel activity in mitochondrial membranes. Furthermore, injection of full-length BCL-xL protein into the presynaptic terminal enhanced postsynaptic responses and enhanced the rate of recovery from synaptic depression, whereas a recombinant pro-apoptotic cleavage product of BCL-xL attenuated postsynaptic responses. The effect of BCL-xL on synaptic responses persisted in the presence of a blocker of mitochondrial calcium uptake and was mimicked by injection of ATP into the terminal. These studies indicate that the permeability of outer mitochondrial membranes influences synaptic transmission, and they raise the possibility that modulation of mitochondrial conductance by BCL-2 family proteins affects synaptic stability.


Assuntos
Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Corantes/farmacologia , Decapodiformes , Estimulação Elétrica/métodos , Técnicas In Vitro , Canais Iônicos/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Rutênio Vermelho/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Proteína bcl-X
3.
Genes Dev ; 18(22): 2785-97, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15520274

RESUMO

The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Cisteína Endopeptidases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Membranas Artificiais , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso , Fosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína bcl-X
4.
J Virol ; 76(20): 10393-400, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12239316

RESUMO

Cellular proteins that regulate apoptotic cell death can modulate the outcome of Sindbis virus (SV) encephalitis in mice. Both endogenous and overexpressed BCL-2 and BAX proteins protect newborn mice from fatal SV infection by blocking apoptosis in infected neurons. To determine the effects of these cellular factors on the course of infection in older animals, a more neurovirulent SV vector (dsNSV) was constructed from a viral strain that causes both prominent spinal cord infection with hind-limb paralysis and death in weanling mice. This vector has allowed assessment of the effects of BCL-2 and BAX on both mortality and paralysis in these hosts. Similar to newborn hosts, weanling mice infected with dsNSV encoding BCL-2 or BAX survived better than animals infected with control viruses. This finding indicates that BCL-2 and BAX both protect neurons that mediate host survival. Neither cellular factor, however, could suppress the development of hind-limb paralysis or prevent the degeneration of motor neurons in the lumbar spinal cord. Infection of BAX knockout mice with dsNSV demonstrated that endogenous BAX also enhances the survival of animals but has no effect on paralysis. These findings for the spinal cord are consistent with earlier data showing that dying lumbar motor neurons do not exhibit an apoptotic morphology. Thus, divergent cell death pathways are activated in different target populations of neurons during neurovirulent SV infection of weanling mice.


Assuntos
Infecções por Alphavirus/virologia , Apoptose , Neurônios Motores/citologia , Paralisia/virologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Sindbis virus/fisiologia , Medula Espinal/citologia , Animais , Modelos Animais de Doenças , Extremidades/fisiopatologia , Hipocampo/citologia , Vértebras Lombares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2
5.
Proc Natl Acad Sci U S A ; 101(37): 13590-5, 2004 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-15342906

RESUMO

Neuronal death is often preceded by functional alterations at nerve terminals. Anti- and proapoptotic BCL-2 family proteins not only regulate the neuronal death pathway but also affect excitability of healthy neurons. We found that exposure of squid stellate ganglia to hypoxia, a death stimulus for neurons, causes a cysteine protease-dependent loss of full-length antiapoptotic BCL-xL, similar to previous findings in mammalian cells. Therefore, to determine the direct effect of the naturally occurring proapoptotic cleavage product of BCL-xL on mitochondria, recombinant N-truncated BCL-xL was applied to mitochondria inside the squid presynaptic terminal and to purified mitochondria isolated from yeast. N-truncated BCL-xL rapidly induced large multi-conductance channels with a maximal conductance significantly larger than those produced by full-length BCL-xL. This activity required the hydrophobic C terminus and the BH3 domain of BCL-xL. Moreover, N-truncated BCL-xL failed to produce any channel activity when applied to plasma membranes, suggesting that a component of the mitochondrial membrane is necessary for its actions. Consistent with this idea, the large channels induced by N-truncated BCL-xL are inhibited by NADH and require the presence of VDAC, a voltage-dependent anion channel present in the outer mitochondrial membrane. These observations suggest that the mitochondrial channels specific to full-length and N-truncated BCL-xL contribute to their opposite effects on synaptic transmission, and are consistent with their opposite effects on the cell death pathway.


Assuntos
Apoptose , Canais Iônicos/agonistas , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Deleção de Sequência/genética , Animais , Decapodiformes , Condutividade Elétrica , Endopeptidases/metabolismo , Hipóxia/metabolismo , Canais Iônicos/metabolismo , Lipossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , NAD/farmacologia , Técnicas de Patch-Clamp , Porinas/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/sangue , Proteínas Proto-Oncogênicas c-bcl-2/genética , Canais de Ânion Dependentes de Voltagem , Proteína bcl-X
6.
J Biol Chem ; 279(40): 42240-9, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15231831

RESUMO

The mammalian BAD protein belongs to the BH3-only subgroup of the BCL-2 family. In contrast to its known pro-apoptotic function, we found that endogenous and overexpressed BAD(L) can inhibit cell death in neurons and other cell types. Several mechanisms regulate the conversion of BAD from an anti-death to a pro-death factor, including alternative splicing that produces the N-terminally truncated BAD(S). In addition, caspases convert BAD(L) into a pro-death fragment that resembles the short splice variant. The caspase site that is selectively cleaved during cell death following growth factor (interleukin-3) withdrawal is conserved between human and murine BAD. A second cleavage site that is required for murine BAD to promote death following Sindbis virus infection, gamma-irradiation, and staurosporine treatment is not conserved in human BAD, consistent with the inability of human BAD to promote death with these stimuli. However, loss of the BAD N terminus by any mechanism is not always sufficient to activate its pro-death activity, suggesting that the N terminus is a regulatory domain rather than an anti-death domain. These findings suggest that BAD is more than an inert death factor in healthy cells; it is also a pro-survival factor, prior to its role in promoting cell death.


Assuntos
Proteínas de Transporte/fisiologia , Neurônios/citologia , Infecções por Alphavirus/patologia , Sequência de Aminoácidos , Animais , Apoptose , Sítios de Ligação , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Sequência Conservada , Raios gama/efeitos adversos , Humanos , Camundongos , Sindbis virus , Estaurosporina/farmacologia , Transfecção , Proteína de Morte Celular Associada a bcl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA