Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(1): 42-47, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30541282

RESUMO

Commensal microorganisms in the mammalian gut play important roles in host health and physiology, but a central challenge remains in achieving a detailed mechanistic understanding of specific microbial contributions to host biochemistry. New function-based approaches are needed that analyze gut microbial function at the molecular level by coupling detection and measurements of in situ biochemical activity with identification of the responsible microbes and enzymes. We developed a platform employing ß-glucuronidase selective activity-based probes to detect, isolate, and identify microbial subpopulations in the gut responsible for this xenobiotic metabolism. We find that metabolic activity of gut microbiota can be plastic and that between individuals and during perturbation, phylogenetically disparate populations can provide ß-glucuronidase activity. Our work links biochemical activity with molecular-scale resolution without relying on genomic inference.


Assuntos
Microbioma Gastrointestinal , Sondas Moleculares/metabolismo , Glucuronidase/metabolismo , Sondas Moleculares/química , Xenobióticos/metabolismo
2.
NanoImpact ; 30: 100463, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060994

RESUMO

Graphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.


Assuntos
Microbiota , Peixe-Zebra , Humanos , Camundongos , Animais , RNA Ribossômico 16S/genética , Peixe-Zebra/genética , Bacteroidetes/genética , Ácido gama-Aminobutírico
3.
Microbiome ; 11(1): 34, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849975

RESUMO

BACKGROUND: Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up. RESULTS: Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting. CONCLUSIONS: Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.


Assuntos
Ecossistema , Lipidômica , Aclimatação , Ceramidas , Ácidos Graxos , Ácidos Graxos Insaturados
4.
Anal Bioanal Chem ; 404(2): 563-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22695502

RESUMO

In general, classification-based methods based on confocal Raman microscopy are focused on targeted studies under which the spectral libraries are collected under controlled instrument parameters, which facilitate analyses via standard multivariate data analysis methods and cross-validation. We develop and compare approaches to transform spectra collected at different spectral ranges and varying levels of resolution into a single lower-dimension spectral signature library. This will result in a more robust analysis method able to accommodate spectra accumulated at different times and conditions. We demonstrate these approaches on a relevant test case; the identification of microbial species from a natural environment. The training data were based on samples prepared for three unique species collected at two time points and the test data consisted of blinded unknowns prepared and analyzed at a later date with different instrument parameters. The results indicate that using reduced dimension representations of the spectral signatures improves classification accuracy over basic alignment protocols. In particular, utilizing the microbial species partial least squares discriminant analysis classifier on the blinded samples based on alignment achieved ~78 % accuracy, while both binning and peak selection approaches yielded 100 % accuracy.


Assuntos
Análise Espectral Raman/métodos , Microscopia Confocal
5.
Front Microbiol ; 13: 803420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250925

RESUMO

Understanding the mechanisms underlying the assembly of communities has long been the goal of many ecological studies. While several studies have evaluated community wide ecological assembly, fewer have focused on investigating the impacts of individual members within a community or assemblage on ecological assembly. Here, we adapted a previous null model ß-nearest taxon index (ßNTI) to measure the contribution of individual features within an ecological community to overall assembly. This new metric, called feature-level ßNTI (ßNTIfeat), enables researchers to determine whether ecological features (e.g., individual microbial taxa) contribute to divergence, convergence, or have insignificant impacts across spatiotemporally resolved metacommunities or meta-assemblages. Using ßNTIfeat, we revealed that unclassified microbial lineages often contributed to community divergence while diverse groups (e.g., Crenarchaeota, Alphaproteobacteria, and Gammaproteobacteria) contributed to convergence. We also demonstrate that ßNTIfeat can be extended to other ecological assemblages such as organic molecules comprising organic matter (OM) pools. OM had more inconsistent trends compared to the microbial community though CHO-containing molecular formulas often contributed to convergence, while nitrogen and phosphorus-containing formulas contributed to both convergence and divergence. A network analysis was used to relate ßNTIfeat values from the putatively active microbial community and the OM assemblage and examine potentially common contributions to ecological assembly across different communities/assemblages. This analysis revealed that P-containing formulas often contributed to convergence/divergence separately from other ecological features and N-containing formulas often contributed to assembly in coordination with microorganisms. Additionally, members of Family Geobacteraceae were often observed to contribute to convergence/divergence in conjunction with both N- and P-containing formulas, suggesting a coordinated ecological role for family members and the nitrogen/phosphorus cycle. Overall, we show that ßNTIfeat offers opportunities to investigate the community or assemblage members, which shape the phylogenetic or functional landscape, and demonstrate the potential to evaluate potential points of coordination across various community types.

6.
mBio ; 12(6): e0259521, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724822

RESUMO

Soil viruses are abundant, but the influence of the environment and climate on soil viruses remains poorly understood. Here, we addressed this gap by comparing the diversity, abundance, lifestyle, and metabolic potential of DNA viruses in three grassland soils with historical differences in average annual precipitation, low in eastern Washington (WA), high in Iowa (IA), and intermediate in Kansas (KS). Bioinformatics analyses were applied to identify a total of 2,631 viral contigs, including 14 complete viral genomes from three deep metagenomes (1 terabase [Tb] each) that were sequenced from bulk soil DNA. An additional three replicate metagenomes (∼0.5 Tb each) were obtained from each location for statistical comparisons. Identified viruses were primarily bacteriophages targeting dominant bacterial taxa. Both viral and host diversity were higher in soil with lower precipitation. Viral abundance was also significantly higher in the arid WA location than in IA and KS. More lysogenic markers and fewer clustered regularly interspaced short palindromic repeats (CRISPR) spacer hits were found in WA, reflecting more lysogeny in historically drier soil. More putative auxiliary metabolic genes (AMGs) were also detected in WA than in the historically wetter locations. The AMGs occurring in 18 pathways could potentially contribute to carbon metabolism and energy acquisition in their hosts. Structural equation modeling (SEM) suggested that historical precipitation influenced viral life cycle and selection of AMGs. The observed and predicted relationships between soil viruses and various biotic and abiotic variables have value for predicting viral responses to environmental change. IMPORTANCE Soil viruses are abundant but poorly understood. Because soil viruses regulate the dynamics of their hosts and potentially key processes in soil ecology, it is important to understand them better. Here, we leveraged massive DNA sequencing to unearth previously unknown soil viruses. We found that soil viruses differed across a historical gradient of precipitation. We compared soil viruses from Iowa, which is traditionally wetter, to those from Washington, which is traditionally drier, and from Kansas, which is intermediate. This study provides strong evidence that changes in historical precipitation impact not only the types of soil viruses but also their functional potential.


Assuntos
Vírus de DNA , Pradaria , Microbiologia do Solo , Bactérias/virologia , Bacteriófagos , Biologia Computacional , Vírus de DNA/genética , Ecossistema , Genoma Viral , Lisogenia , Metagenoma , Metagenômica , Análise de Sequência de DNA , Solo , Washington
7.
PLoS One ; 16(12): e0259937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34879068

RESUMO

The microbial and molecular characterization of the ectorhizosphere is an important step towards developing a more complete understanding of how the cultivation of biofuel crops can be undertaken in nutrient poor environments. The ectorhizosphere of Setaria is of particular interest because the plant component of this plant-microbe system is an important agricultural grain crop and a model for biofuel grasses. Importantly, Setaria lends itself to high throughput molecular studies. As such, we have identified important intra- and interspecific microbial and molecular differences in the ectorhizospheres of three geographically distant Setaria italica accessions and their wild ancestor S. viridis. All were grown in a nutrient-poor soil with and without nutrient addition. To assess the contrasting impact of nutrient deficiency observed for two S. italica accessions, we quantitatively evaluated differences in soil organic matter, microbial community, and metabolite profiles. Together, these measurements suggest that rhizosphere priming differs with Setaria accession, which comes from alterations in microbial community abundances, specifically Actinobacteria and Proteobacteria populations. When globally comparing the metabolomic response of Setaria to nutrient addition, plants produced distinctly different metabolic profiles in the leaves and roots. With nutrient addition, increases of nitrogen containing metabolites were significantly higher in plant leaves and roots along with significant increases in tyrosine derived alkaloids, serotonin, and synephrine. Glycerol was also found to be significantly increased in the leaves as well as the ectorhizosphere. These differences provide insight into how C4 grasses adapt to changing nutrient availability in soils or with contrasting fertilization schemas. Gained knowledge could then be utilized in plant enhancement and bioengineering efforts to produce plants with superior traits when grown in nutrient poor soils.


Assuntos
Bactérias/classificação , RNA Ribossômico 16S/genética , Setaria (Planta)/classificação , Setaria (Planta)/crescimento & desenvolvimento , Solo/química , Alcaloides/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Glicerol , Metabolômica , Nitrogênio/metabolismo , Filogenia , Filogeografia , Folhas de Planta/classificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Análise de Sequência de DNA , Setaria (Planta)/metabolismo , Setaria (Planta)/microbiologia , Microbiologia do Solo
8.
Methods Enzymol ; 638: 89-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416923

RESUMO

Understanding the roles that individual species or communities play within a microbiome is a significant challenge. The complexity and heterogeneity of microbiomes presents a challenge to researchers looking to unravel the function that microbiomes serve within larger environments. While identification of the species and proteins present in a microbiome can be accomplished through genomics approaches, strategies that report on enzyme activity are limited. In this chapter, we describe the application of small molecule chemical probes in the isolation and subsequent characterization of microbiome subpopulations based on enzymatic function. We will cover protocols for labeling microbes with appropriate probes, microbiome sample preparation, and using fluorescence-activated cell sorting to isolate subpopulations based on function. We hope that the strategies outlined here will serve as a resource for researchers studying the functional role that microbiomes play in the gut and soil.


Assuntos
Microbiota , Genômica
9.
Front Microbiol ; 11: 1987, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983014

RESUMO

The soil microbiome is central to the cycling of carbon and other nutrients and to the promotion of plant growth. Despite its importance, analysis of the soil microbiome is difficult due to its sheer complexity, with thousands of interacting species. Here, we reduced this complexity by developing model soil microbial consortia that are simpler and more amenable to experimental analysis but still represent important microbial functions of the native soil ecosystem. Samples were collected from an arid grassland soil and microbial communities (consisting mainly of bacterial species) were enriched on agar plates containing chitin as the main carbon source. Chitin was chosen because it is an abundant carbon and nitrogen polymer in soil that often requires the coordinated action of several microorganisms for complete metabolic degradation. Several soil consortia were derived that had tractable richness (30-50 OTUs) with diverse phyla representative of the native soil, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. The resulting consortia could be stored as glycerol or lyophilized stocks at -80°C and revived while retaining community composition, greatly increasing their use as tools for the research community at large. One of the consortia that was particularly stable was chosen as a model soil consortium (MSC-1) for further analysis. MSC-1 species interactions were studied using both pairwise co-cultivation in liquid media and during growth in soil under several perturbations. Co-abundance analyses highlighted interspecies interactions and helped to define keystone species, including Mycobacterium, Rhodococcus, and Rhizobiales taxa. These experiments demonstrate the success of an approach based on naturally enriching a community of interacting species that can be stored, revived, and shared. The knowledge gained from querying these communities and their interactions will enable better understanding of the soil microbiome and the roles these interactions play in this environment.

10.
PLoS One ; 15(1): e0228165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986180

RESUMO

Biodiversity is thought to prevent decline in community function in response to changing environmental conditions through replacement of organisms with similar functional capacity but different optimal growth characteristics. We examined how this concept translates to the within-gene level by exploring seasonal dynamics of within-gene diversity for genes involved in nitrogen cycling in hyporheic zone communities. Nitrification genes displayed low richness-defined as the number of unique within-gene phylotypes-across seasons. Conversely, denitrification genes varied in both richness and the degree to which phylotypes were recruited or lost. These results demonstrate that there is not a universal mechanism for maintaining community functional potential for nitrogen cycling activities, even across seasonal environmental shifts to which communities would be expected to be well adapted. As such, extreme environmental changes could have very different effects on the stability of the different nitrogen cycle activities. These outcomes suggest a need to modify existing conceptual models that link biodiversity to microbiome function to incorporate within-gene diversity. Specifically, we suggest an expanded conceptualization that 1) recognizes component steps (genes) with low diversity as potential bottlenecks influencing pathway-level function, and 2) includes variation in both the number of entities (e.g. species, phylotypes) that can contribute to a given process and the turnover of those entities in response to shifting conditions. Building these concepts into process-based ecosystem models represents an exciting opportunity to connect within-gene-scale ecological dynamics to ecosystem-scale services.


Assuntos
Biodiversidade , Microbiota/genética , Ciclo do Nitrogênio/genética , Estações do Ano , Fatores de Tempo
11.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763940

RESUMO

To enable an in-depth survey of the metabolic potential of complex soil microbiomes, we performed ultra-deep metagenome sequencing, collecting >1 Tb of sequence data from three grassland soils representing different precipitation regimes.

12.
Nat Commun ; 11(1): 6369, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311510

RESUMO

Environmental metabolomes are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, significant gaps exist in our understanding of their spatiotemporal organization, limiting our ability to uncover transferrable principles and predict ecosystem function. We propose that a theoretical paradigm, which integrates concepts from metacommunity ecology, is necessary to reveal underlying mechanisms governing metabolomes. We call this synthesis between ecology and metabolomics 'meta-metabolome ecology' and demonstrate its utility using a mass spectrometry dataset. We developed three relational metabolite dendrograms using molecular properties and putative biochemical transformations and performed ecological null modeling. Based upon null modeling results, we show that stochastic processes drove molecular properties while biochemical transformations were structured deterministically. We further suggest that potentially biochemically active metabolites were more deterministically assembled than less active metabolites. Understanding variation in the influences of stochasticity and determinism provides a way to focus attention on which meta-metabolomes and which parts of meta-metabolomes are most likely to be important to consider in mechanistic models. We propose that this paradigm will allow researchers to study the connections between ecological systems and their molecular processes in previously inaccessible detail.


Assuntos
Ecologia , Metaboloma , Biodiversidade , Ecossistema , Metabolômica , Modelos Biológicos , Modelos Teóricos , Processos Estocásticos , Termodinâmica
14.
Metallomics ; 11(1): 166-175, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30427023

RESUMO

The chemical structure of organic molecules profoundly impacts their interactions with metal ions and mineral phases in soils. Understanding the sources and cycling of metal-chelating compounds is therefore essential for predicting the bioavailability and transport of metals throughout terrestrial environments. Here we investigate the molecular speciation of organic molecules that solubilize trace metals in calcareous soils from Eastern Washington. Ultra-high performance Fourier transform ion cyclotron resonance mass spectrometry at 21 Tesla enabled fast and confident detection and identification of metal chelators that are produced by microbes that inhabit these soils based on screening for features that match diagnostic metal isotope patterns. We compared two approaches, one based on direct infusion using the incorporation of a rare isotope to validate true iron-binding features, and another based on separation with liquid chromatography and detection of isotopologues with coherent elution profiles. While the isotopic exchange method requires significantly shorter analysis time, nearly twice as many features were observed with liquid chromatography mass spectrometry (LCMS), mostly due to the reduction in ion suppression where major features limit the sensitivity of minor features. In addition, LCMS enabled the collection of higher quality fragmentation spectra and facilitated feature identification. Siderophores belonging to four major classes were identified, including ferrioxamines, pseudobactins, enterobactins, and arthrobactins. Each of these siderophores likely derives from a unique member of the microbial community, and each possesses different chemical characteristics and uptake pathways, likely contributing to fierce competition for iron within these soils. Our results provide insight into the metabolic pathways by which microbes that co-inhabit calcareous soils compete for this essential micronutrient.


Assuntos
Espectrometria de Massas/métodos , Sideróforos/análise , Microbiologia do Solo , Cromatografia Líquida/métodos , Ciclotrons , Análise de Fourier , Espectrometria de Massas/instrumentação
15.
Front Mol Biosci ; 6: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681796

RESUMO

The gut microbiome plays an important role in the mammalian host and when in proper balance helps protect health and prevent disease. Host environmental stress and its influence on the gut microbiome, health, and disease is an emerging area of research. Exposures to unnatural light cycles are becoming increasingly common due to travel and shift work. However, much remains unknown about how these changes influence the microbiome and host health. This information is needed to understand and predict the relationship between the microbiome and host response to altered sleep cycles. In the present study, we exposed three cohorts of mice to different light cycle regimens for 12 consecutive weeks; including continuous light, continuous dark, and a standard light dark regimen consisting of 12 h light followed by 12 h of dark. After exposure, motor and memory behavior, and the composition of the fecal microbiome and plasma metabolome were measured. Memory potential was significantly reduced in mice exposed to continuous light, whereas rotarod performance was minimally affected. The overall composition of the microbiome was relatively constant over time. However, Bacteroidales Rikenellaceae was relatively more abundant in mice exposed to continuous dark, while Bacteroidales S24-7 was relatively more abundant in mice exposed to continuous light. The plasma metabolome after the continuous dark exposure differed from the other exposure conditions. Several plasma metabolites, including glycolic acid, tryptophan, pyruvate, and several unidentified metabolites, were correlated to continuous dark and light exposure conditions. Networking analyses showed that serotonin was positively correlated with three microbial families (Rikenellaceae, Ruminococcaceae, and Turicibacteraceae), while tryptophan was negatively correlated with abundance of Bacteroidales S24-7 based on light exposure. This study provides the foundation for future studies into the mechanisms underlying the role of the gut microbiome on the murine host during light-dark stress.

16.
ISME J ; 13(7): 1865-1877, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30886318

RESUMO

Microbial community succession is a fundamental process that affects underlying functions of almost all ecosystems; yet the roles and fates of the most abundant colonizers are often poorly understood. Does early abundance spur long term persistence? How do deterministic and stochastic processes influence the ecological contribution of colonizers? We performed a succession experiment within a hypersaline ecosystem to investigate how different processes contributed to the turnover of founder species. Bacterial and eukaryotic colonizers were identified during primary succession and tracked through a defined, 79-day biofilm maturation period using 16S and 18S rRNA gene sequencing in combination with high resolution imaging that utilized stable isotope tracers to evaluate successional patterns of primary producers and nitrogen fixers. The majority of the founder species did not maintain high abundance throughout succession. Species replacement (versus loss) was the dominant process shaping community succession. We also asked if different ecological processes acted on bacteria versus Eukaryotes during succession and found deterministic and stochastic forces corresponded more with microeukaryote and bacterial colonization, respectively. Our results show that taxa and functions belonging to different kingdoms, which share habitat in the tight spatial confines of a biofilm, were influenced by different ecological processes and time scales of succession.


Assuntos
Bactérias/classificação , Biofilmes , Microbiota , Bactérias/genética , Ecologia , Processos Estocásticos
17.
mSystems ; 4(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098394

RESUMO

Soil microorganisms play fundamental roles in cycling of soil carbon, nitrogen, and other nutrients, yet we have a poor understanding of how soil microbiomes are shaped by their nutritional and physical environment. In this study, we investigated the successional dynamics of a soil microbiome during 21 weeks of enrichment on chitin and its monomer, N-acetylglucosamine. We examined succession of the soil communities in a physically heterogeneous soil matrix as well as a homogeneous liquid medium. The guiding hypothesis was that the initial species richness would influence the tendency for the selected consortia to stabilize and maintain a relatively constant community structure over time. We also hypothesized that long-term, substrate-driven growth would result in consortia with reduced species richness compared to the parent microbiome and that this process would be deterministic with relatively little variation between replicates. We found that the initial species richness does influence the long-term community stability in both liquid media and soil and that lower initial richness results in a more rapid convergence to stability. Despite use of the same soil inoculum and access to the same major substrate, the resulting community composition differed greatly in soil from that in liquid medium. Hence, distinct selective pressures in soils relative to homogenous liquid media exist and can control community succession dynamics. This difference is likely related to the fact that soil microbiomes are more likely to thrive, with fewer compositional changes, in a soil matrix than in liquid environments. IMPORTANCE The soil microbiome carries out important ecosystem functions, but interactions between soil microbial communities have been difficult to study due to the high microbial diversity and complexity of the soil habitat. In this study, we successfully obtained stable consortia with reduced complexity that contained species found in the original source soil. These consortia and the methods used to obtain them can be a valuable resource for exploration of specific mechanisms underlying soil microbial community ecology. The results of this study also provide new experimental context to better inform how soil microbial communities are shaped by new environments and how a combination of initial taxonomic structure and physical environment influences stability.

18.
Sci Rep ; 9(1): 1769, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741985

RESUMO

Increasing salinization in wetland systems is a major threat to ecosystem services carried out by microbial communities. Thus, it is paramount to understand how salinity drives both microbial community structures and their diversity. Here we evaluated the structure and diversity of the prokaryotic communities from a range of highly saline soils (EC1:5 from 5.96 to 61.02 dS/m) from the Odiel Saltmarshes and determined their association with salinity and other soil physicochemical features by analyzing 16S rRNA gene amplicon data through minimum entropy decomposition (MED). We found that these soils harbored unique communities mainly composed of halophilic and halotolerant taxa from the phyla Euryarchaeota, Proteobacteria, Balneolaeota, Bacteroidetes and Rhodothermaeota. In the studied soils, several site-specific properties were correlated with community structure and individual abundances of particular sequence variants. Salinity had a secondary role in shaping prokaryotic communities in these highly saline samples since the dominant organisms residing in them were already well-adapted to a wide range of salinities. We also compared ESV-based results with OTU-clustering derived ones, showing that, in this dataset, no major differences in ecological outcomes were obtained by the employment of one or the other method.


Assuntos
Microbiota , Células Procarióticas , Salinidade , Microbiologia do Solo , Solo/química , Animais , Biodiversidade , Fenômenos Químicos , Sedimentos Geológicos/microbiologia , Metagenoma , Metagenômica/métodos , Camundongos
19.
mSystems ; 4(4)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186334

RESUMO

Climate change is causing shifts in precipitation patterns in the central grasslands of the United States, with largely unknown consequences on the collective physiological responses of the soil microbial community, i.e., the metaphenome. Here, we used an untargeted omics approach to determine the soil microbial community's metaphenomic response to soil moisture and to define specific metabolic signatures of the response. Specifically, we aimed to develop the technical approaches and metabolic mapping framework necessary for future systematic ecological studies. We collected soil from three locations at the Konza Long-Term Ecological Research (LTER) field station in Kansas, and the soils were incubated for 15 days under dry or wet conditions and compared to field-moist controls. The microbiome response to wetting or drying was determined by 16S rRNA amplicon sequencing, metatranscriptomics, and metabolomics, and the resulting shifts in taxa, gene expression, and metabolites were assessed. Soil drying resulted in significant shifts in both the composition and function of the soil microbiome. In contrast, there were few changes following wetting. The combined metabolic and metatranscriptomic data were used to generate reaction networks to determine the metaphenomic response to soil moisture transitions. Site location was a strong determinant of the response of the soil microbiome to moisture perturbations. However, some specific metabolic pathways changed consistently across sites, including an increase in pathways and metabolites for production of sugars and other osmolytes as a response to drying. Using this approach, we demonstrate that despite the high complexity of the soil habitat, it is possible to generate insight into the effect of environmental change on the soil microbiome and its physiology and functions, thus laying the groundwork for future, targeted studies.IMPORTANCE Climate change is predicted to result in increased drought extent and intensity in the highly productive, former tallgrass prairie region of the continental United States. These soils store large reserves of carbon. The decrease in soil moisture due to drought has largely unknown consequences on soil carbon cycling and other key biogeochemical cycles carried out by soil microbiomes. In this study, we found that soil drying had a significant impact on the structure and function of soil microbial communities, including shifts in expression of specific metabolic pathways, such as those leading toward production of osmoprotectant compounds. This study demonstrates the application of an untargeted multi-omics approach to decipher details of the soil microbial community's metaphenotypic response to environmental perturbations and should be applicable to studies of other complex microbial systems as well.

20.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912311

RESUMO

Understanding drivers of permafrost microbial community composition is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw. We hypothesize that permafrost communities are shaped by physical constraints imposed by prolonged freezing, and exhibit spatial distributions that reflect dispersal limitation and selective pressures associated with these physical constraints. To test this, we characterized patterns of environmental variation and microbial community composition in permafrost across an Alaskan boreal forest landscape. We used null modeling to estimate the importance of selective and neutral assembly processes on community composition, and identified environmental factors influencing ecological selection through regression and structural equation modeling (SEM). Proportionally, the strongest process influencing community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21), variable selection (0.16) and homogenizing dispersal (0.05). Fe(II) content was the most important factor explaining variable selection, and was significantly associated with total selection by univariate regression (R2 = 0.14, P = 0.003). SEM supported a model in which Fe(II) content mediated influences of the Gibbs free energy of the organic matter pool and organic acid concentration on total selection. These findings suggest that the dominant processes shaping microbial communities in permafrost result from the stability of the permafrost environment, which imposes dispersal and thermodynamic constraints.


Assuntos
Ferro/metabolismo , Microbiota/genética , Pergelissolo/microbiologia , Alaska , Meio Ambiente , Congelamento , Modelos Teóricos , Taiga , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA