Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 57: 10-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999154

RESUMO

In the adult central nervous system (CNS) subsets of neurons are enwrapped by densely organized extracellular matrix structures, called perineuronal nets (PNNs). PNNs are formed at the end of critical periods and contribute to synapse stabilization. Enzymatic degradation of PNNs or genetic deletion of specific PNN components leads to the prolongation of the plasticity period. PNNs consist of extracellular matrix molecules, including chondroitin sulfate proteoglycans, hyaluronan, tenascins and link proteins. It has been recently shown that the chemorepulsive axon guidance protein semaphorin3A (Sema3A) is also a constituent of PNNs, binding with high affinity to the sugar chains of chondroitin sulfate proteoglycans. To elucidate whether the expression of Sema3A is modified in parallel with structural plasticity in the adult CNS, we examined Sema3A expression in the deep cerebellar nuclei of the adult mouse in a number of conditions associated with structural reorganization of the local connectivity. We found that Sema3A in PNNs is reduced during enhanced neuritic remodeling, in both physiological and injury-induced conditions. Moreover, we provide evidence that Sema3A is tightly associated with Purkinje axons and their terminals and its amount in the PNNs is related to Purkinje cell innervation of DCN neurons, but not to glutamatergic inputs. On the whole these data suggest that Sema3A may contribute to the growth-inhibitory properties of PNNs and Purkinje neurons may directly control their specific connection pattern through the release and capture of this guidance cue in the specialized ECM that surrounds their terminals.


Assuntos
Cerebelo/metabolismo , Matriz Extracelular/metabolismo , Células de Purkinje/citologia , Semaforina-3A/metabolismo , Animais , Cerebelo/citologia , Camundongos , Células de Purkinje/metabolismo , Semaforina-3A/genética
2.
Front Cell Neurosci ; 18: 1328963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456063

RESUMO

This perspective review aims to explore the potential neurobiological mechanisms involved in the application of transcranial Direct Current Stimulation (tDCS) for Down syndrome (DS), the leading cause of genetically-based intellectual disability. The neural mechanisms underlying tDCS interventions in genetic disorders, typically characterized by cognitive deficits, are grounded in the concept of brain plasticity. We initially present the neurobiological and functional effects elicited by tDCS applications in enhancing neuroplasticity and in regulating the excitatory/inhibitory balance, both associated with cognitive improvement in the general population. The review begins with evidence on tDCS applications in five neurogenetic disorders, including Rett, Prader-Willi, Phelan-McDermid, and Neurofibromatosis 1 syndromes, as well as DS. Available evidence supports tDCS as a potential intervention tool and underscores the importance of advancing neurobiological research into the mechanisms of tDCS action in these conditions. We then discuss the potential of tDCS as a promising non-invasive strategy to mitigate deficits in plasticity and promote fine-tuning of the excitatory/inhibitory balance in DS, exploring implications for cognitive treatment perspectives in this population.

3.
Neural Plast ; 2013: 854597, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23864962

RESUMO

Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.


Assuntos
Pessoas com Deficiência/reabilitação , Terapia por Exercício/métodos , Modalidades de Fisioterapia , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral , Humanos , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Acidente Vascular Cerebral/fisiopatologia
4.
PLoS One ; 17(3): e0264999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294473

RESUMO

This study aimed to test two common explanations for the general finding of age-related changes in the performance of timing tasks within the millisecond-to-second range intervals. The first explanation is that older adults have a real difficulty in temporal processing as compared to younger adults. The second explanation is that older adults perform poorly on timing tasks because of their reduced cognitive control functions. These explanations have been mostly contrasted in explicit timing tasks that overtly require participants to process interval durations. Fewer studies have instead focused on implicit timing tasks, where no explicit instructions to process time are provided. Moreover, the investigation of both explicit and implicit timing in older adults has been restricted so far to healthy older participants. Here, a large sample (N = 85) comprising not only healthy but also pathological older adults completed explicit (time bisection) and implicit (foreperiod) timing tasks within a single session. Participants' age and cognitive decline, measured with the Mini-Mental State Examination (MMSE), were used as continuous variables to explain performance on explicit and implicit timing tasks. Results for the explicit timing task showed a flatter psychometric curve with increasing age or decreasing MMSE scores, pointing to a deficit at the level of cognitive control functions rather than of temporal processing. By contrast, for the implicit timing task, a decrease in the MMSE scores was associated with a reduced foreperiod effect, an index of implicit time processing. Overall, these findings extend previous studies on explicit and implicit timing in healthy aged samples by dissociating between age and cognitive decline (in the normal-to-pathological continuum) in older adults.


Assuntos
Disfunção Cognitiva , Percepção do Tempo , Idoso , Humanos
5.
Neuropsychopharmacology ; 41(6): 1457-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26538449

RESUMO

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits.


Assuntos
Transtorno Autístico/fisiopatologia , Cerebelo/fisiopatologia , PTEN Fosfo-Hidrolase/fisiologia , Células de Purkinje/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Comportamento Social , Aprendizagem Espacial/fisiologia , Comportamento Estereotipado/fisiologia
6.
Brain Struct Funct ; 221(6): 3193-209, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26264050

RESUMO

Perineuronal nets (PNNs) are aggregates of extracellular matrix molecules surrounding several types of neurons in the adult CNS, which contribute to stabilising neuronal connections. Interestingly, a reduction of PNN number and staining intensity has been observed in conditions associated with plasticity in the adult brain. However, it is not known whether spontaneous PNN changes are functional to plasticity and repair after injury. To address this issue, we investigated PNN expression in the vestibular nuclei of the adult mouse during vestibular compensation, namely the resolution of motor deficits resulting from a unilateral peripheral vestibular lesion. After unilateral labyrinthectomy, we found that PNN number and staining intensity were strongly attenuated in the lateral vestibular nucleus on both sides, in parallel with remodelling of excitatory and inhibitory afferents. Moreover, PNNs were completely restored when vestibular deficits of the mice were abated. Interestingly, in mice with genetically reduced PNNs, vestibular compensation was accelerated. Overall, these results strongly suggest that temporal tuning of PNN expression may be crucial for vestibular compensation.


Assuntos
Axônios/fisiologia , Matriz Extracelular/fisiologia , Plasticidade Neuronal , Recuperação de Função Fisiológica , Núcleos Vestibulares/fisiologia , Animais , Axônios/metabolismo , Orelha Interna/lesões , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Equilíbrio Postural , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Núcleos Vestibulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA