Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(12): 1073-1085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37899004

RESUMO

Tropospheric ozone (O3 ) is a global air pollutant that adversely affects plant growth. Whereas the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). To address this, we exposed Australia's major banana cultivar, Williams, to a range of [O3 ] in open top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in three traits that are hypothesised to shape responses to O3 : (1) leaf mass per area; (2) intrinsic water use efficiency; and (3) total antioxidant capacity. We show that O3 exposure had a significant effect on the biomass of cv. Williams, with significant reductions in both pseudostem and sucker biomass with increasing [O3 ]. This was accompanied by a significant increase in total antioxidant capacity and phenolic concentrations in older, but not younger, leaves, indicating the importance of cumulative O3 exposure. Using the observed trait diversity, we projected O3 tolerance among the 46 Musa lines growing in the common garden. Of these, cv. Williams ranked as one of the most O3 -tolerant cultivars. This suggests that other genetic lines could be even more susceptible, with implications for banana production and food security throughout the tropics.


Assuntos
Musa , Ozônio , Antioxidantes , Ozônio/toxicidade , Folhas de Planta , Produtos Agrícolas
2.
Sci Total Environ ; 904: 166817, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673248

RESUMO

Sugarcane is a vital commodity crop often grown in (sub)tropical regions which have been experiencing a recent deterioration in air quality. Unlike for other commodity crops, the risk of air pollution, specifically ozone (O3), to this C4 crop has not yet been quantified. Yet, recent work has highlighted both the potential risks of O3 to C4 bioenergy crops, and the emergence of O3 exposure across the tropics as a vital factor determining global food security. Given the large extent, and planned expansion of sugarcane production in places like Brazil to meet global demand for biofuels, there is a pressing need to characterize the risk of O3 to the industry. In this study, we sought to a) derive sugarcane O3 dose-response functions across a range of realistic O3 exposure and b) model the implications of this across a globally important production area. We found a significant impact of O3 on biomass allocation (especially to leaves) and production across a range of sugarcane genotypes, including two commercially relevant varieties (e.g. CTC4, Q240). Using these data, we calculated dose-response functions for sugarcane and combined them with hourly O3 exposure across south-central Brazil derived from the UK Earth System Model (UKESM1) to simulate the current regional impact of O3 on sugarcane production using a dynamic global vegetation model (JULES vn 5.6). We found that between 5.6 % and 18.3 % of total crop productivity is likely lost across the region due to the direct impacts of current O3 exposure. However, impacts depended critically on the substantial differences in O3 susceptibility observed among sugarcane genotypes and how these were implemented in the model. Our work highlights not only the urgent need to fully elucidate the impacts of O3 in this important bioenergetic crop, but the potential implications air quality may have upon tropical food production more generally.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Saccharum , Ozônio/análise , Grão Comestível/química , Produtos Agrícolas , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA