Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682600

RESUMO

Communication between cells and the microenvironment is a complex, yet crucial, element in the development and progression of varied physiological and pathological processes. Accumulating evidence in different disease models highlights roles of extracellular vesicles (EVs), either in modulating cell signaling paracrine mechanism(s) or harnessing their therapeutic moiety. Of interest, the human cornea functions as a refractive and transparent barrier that protects the intraocular elements from the external environment. Corneal trauma at the ocular surface may lead to diminished corneal clarity and detrimental effects on visual acuity. The aberrant activation of corneal stromal cells, which leads to myofibroblast differentiation and a disorganized extracellular matrix is a central biological process that may result in corneal fibrosis/scarring. In recent years, understanding the pathological and therapeutic EV mechanism(s) of action in the context of corneal biology has been a topic of increasing interest. In this review, we describe the clinical relevance of corneal fibrosis/scarring and how corneal stromal cells contribute to wound repair and their generation of the stromal haze. Furthermore, we will delve into EV characterization, their subtypes, and the pathological and therapeutic roles they play in corneal scarring/fibrosis.


Assuntos
Doenças da Córnea , Lesões da Córnea , Vesículas Extracelulares , Cicatriz/patologia , Córnea/metabolismo , Doenças da Córnea/etiologia , Doenças da Córnea/patologia , Lesões da Córnea/metabolismo , Vesículas Extracelulares/metabolismo , Fibrose , Humanos , Cicatrização/fisiologia
2.
Z Naturforsch C J Biosci ; 74(3-4): 91-100, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30789828

RESUMO

Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.


Assuntos
Lactonas/química , Norbornanos/química , Oxirredutases/química , Poliésteres/síntese química , Terpenos/química , Biocatálise , Ciclização , Humanos , Lactonas/metabolismo , Norbornanos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Poliésteres/metabolismo , Polimerização , Prenilação , Terpenos/metabolismo
3.
Transl Vis Sci Technol ; 13(6): 12, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888287

RESUMO

Purpose: Recombinant human nerve growth factor (rhNGF; cenegermin-bkbj, OXERVATE) is the first and only U.S. Food and Drug Administration-approved treatment for moderate to severe neurotrophic keratopathy. The aim of this study was to determine the feasibility of incorporating a version of rhNGF in a mucoadhesive hydrogel capable of sustained drug release to the ocular surface. Methods: Hydrogels loaded with rhNGF were synthesized by conjugating chitosan with azidobenzoic acid (Az-Ch), adding rhNGF, and exposing the solution to ultraviolet (UV) radiation to induce photocrosslinking. Az-Ch hydrogels were evaluated for physical properties and rhNGF release profiles. Cytocompatbility of Az-Ch was assessed using immortalized human corneal limbal epithelial (HCLE) cells. TF1 erythroleukemic cell proliferation and HCLE cell proliferation and migration were used to assess the bioactivity of rhNGF released from Az-Ch hydrogels. Results: Az-Ch formed hydrogels in <10 seconds of UV exposure and demonstrated high optical transparency (75-85 T%). Az-Ch hydrogels exhibited good cytocompatibility with no demonstratable effect on HCLE cell morphology or viability. rhNGF was released gradually over 24 hours from Az-Ch hydrogels and retained its ability to induce TF1 cell proliferation. No significant difference was observed between rhNGF released from Az-Ch and freshly prepared rhNGF solutions on HCLE cell proliferation or percent wound closure after 12 hours; however, both were significantly better than control (P < 0.01). Conclusions: rhNGF-loaded Az-Ch hydrogels exhibited favorable physical, optical, and drug-release properties, as well as retained drug bioactivity. This drug delivery system has the potential to be further developed for in vivo and translational clinical applications. Translational Relevance: Az-Ch hydrogels may be used to enhance rhNGF therapy in patients with NK.


Assuntos
Proliferação de Células , Quitosana , Hidrogéis , Fator de Crescimento Neural , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/química , Fator de Crescimento Neural/administração & dosagem , Humanos , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Raios Ultravioleta , Reagentes de Ligações Cruzadas/química , Limbo da Córnea/efeitos dos fármacos , Limbo da Córnea/citologia , Proteínas Recombinantes/química , Sistemas de Liberação de Medicamentos/métodos
4.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354582

RESUMO

Chemotherapy is often used to treat retinoblastoma; however, this treatment method has severe systemic adverse effects and inadequate therapeutic effectiveness. Extracellular vesicles (EVs) are important biological information carriers that mediate local and systemic cell-to-cell communication under healthy and pathological settings. These endogenous vesicles have been identified as important drug delivery vehicles for a variety of therapeutic payloads, including doxorubicin (Dox), with significant benefits over traditional techniques. In this work, EVs were employed as natural drug delivery nanoparticles to load Dox for targeted delivery to retinoblastoma human cell lines (Y-79). Two sub-types of EVs were produced from distinct breast cancer cell lines (4T1 and SKBR3) that express a marker that selectively interacts with retinoblastoma cells and were loaded with Dox, utilizing the cells' endogenous loading machinery. In vitro, we observed that delivering Dox with both EVs increased cytotoxicity while dramatically lowering the dosage of the drug. Dox-loaded EVs, on the other hand, inhibited cancer cell growth by activating caspase-3/7. Direct interaction of EV membrane moieties with retinoblastoma cell surface receptors resulted in an effective drug delivery to cancer cells. Our findings emphasize the intriguing potential of EVs as optimum methods for delivering Dox to retinoblastoma.

5.
Biomater Sci ; 10(19): 5391-5429, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35959730

RESUMO

Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.


Assuntos
Neoplasias da Retina , Retinoblastoma , Materiais Biocompatíveis/uso terapêutico , Criança , Terapia Combinada , Humanos , Qualidade de Vida , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/patologia , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia
6.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559244

RESUMO

This study aimed to develop a miltefosine-eluting contact lens (MLF-CL) device that would allow sustained and localized miltefosine release for the treatment of Acanthamoeba keratitis. MLF-CLs were produced in three different miltefosine doses by solvent-casting a thin miltefosine-polymer film around the periphery of a methafilcon hydrogel, which was then lathed into a contact lens. During seven days of in vitro testing, all three formulations demonstrated sustained release from the lens at theoretically therapeutic levels. Based on the physicochemical characterization of MLF-CLs, MLF-CL's physical properties are not significantly different from commercial contact lenses in terms of light transmittance, water content and wettability. MLF-CLs possessed a slight reduction in compression modulus that was attributed to the inclusion of polymer-drug films but still remain within the optimal range of soft contact lenses. In cytotoxicity studies, MLF-CL indicated up to 91% viability, which decreased proportionally as miltefosine loading increased. A three-day biocompatibility test on New Zealand White rabbits revealed no impact of MLF-CLs on the corneal tissue. The MLF-CLs provided sustained in vitro release of miltefosine for a week while maintaining comparable physical features to a commercial contact lens. MLF-CL has a promising potential to be used as a successful treatment method for Acanthamoeba keratitis.

7.
Biomaterials ; 267: 120465, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129189

RESUMO

In esophageal pathologies, such as esophageal atresia, cancers, caustic burns, or post-operative stenosis, esophageal replacement is performed by using parts of the gastrointestinal tract to restore nutritional autonomy. However, this surgical procedure most often does not lead to complete functional recovery and is instead associated with many complications resulting in a decrease in the quality of life and survival rate. Esophageal tissue engineering (ETE) aims at repairing the defective esophagus and is considered as a promising therapeutic alternative. Noteworthy progress has recently been made in the ETE research area but strong challenges remain to replicate the structural and functional integrity of the esophagus with the approaches currently being developed. Within this context, 3D bioprinting is emerging as a new technology to facilitate the patterning of both cellular and acellular bioinks into well-organized 3D functional structures. Here, we present a comprehensive overview of the recent advances in tissue engineering for esophageal reconstruction with a specific focus on 3D bioprinting approaches in ETE. Current biofabrication techniques and bioink features are highlighted, and these are discussed in view of the complexity of the native esophagus that the designed substitute needs to replace. Finally, perspectives on recent strategies for fabricating other tubular organ substitutes via 3D bioprinting are discussed briefly for their potential in ETE applications.


Assuntos
Bioimpressão , Esôfago/cirurgia , Impressão Tridimensional , Qualidade de Vida , Engenharia Tecidual , Alicerces Teciduais
8.
Biomaterials ; 279: 121207, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741977

RESUMO

Cholangiocytes, biliary epithelial cells, are known to spontaneously self-organize into spherical cysts with a central lumen. In this work, we explore a promising biocompatible stereolithographic approach to encapsulate cholangiocytes into geometrically controlled 3D hydrogel structures to guide them towards the formation of branched tubular networks. We demonstrate that within the appropriate mix of hydrogels, normal rat cholangiocytes can proliferate, migrate, and organize into branched tubular structures with walls consisting of a cell monolayer, transport fluorescent dyes into the luminal space, and show markers of epithelial maturation such as primary cilia and continuous tight junctions. The resulting structures have dimensions typically found in the intralobular and intrahepatic biliary tree and are stable for weeks, without any requirement of bulk supporting material, thereby offering total access to the external side of these biliary epithelial constructs.


Assuntos
Sistema Biliar , Estereolitografia , Animais , Sistema Biliar/diagnóstico por imagem , Células Epiteliais , Hidrogéis , Ratos
9.
IEEE Rev Biomed Eng ; 12: 333-351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29993840

RESUMO

Stem-cell-based therapy is a promising approach for the treatment of a myriad of diseases and injuries. However, the low rate of cell survival and the uncontrolled differentiation of the injected stem cells currently remain key challenges in advancing stem cell therapeutics. Hydrogels are biomaterials that are potentially highly effective candidates for scaffold systems for stem cells and other molecular encapsulation approaches to target in vivo delivery. Hydrogel-based strategies can potentially address several current challenges in stem cell therapy. We present a concise overview of the recent advances in applications of hydrogels in stem cell therapies, with a focus particularly on the recent advances in the design and approaches for application of hydrogels in tissue engineering. The capability of hydrogels to either enhance the function of the transplanted stem cells by promoting their controlled differentiation or enhance the recruitment of endogenous adult stem cells to the injury site for repair is also reviewed. Finally, the importance of impacts and the desired relationship between the scaffold system and the encapsulated stem cells are discussed.


Assuntos
Materiais Biomiméticos/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos/tendências , Hidrogéis/uso terapêutico , Dispositivos para Expansão de Tecidos/tendências , Humanos , Células-Tronco , Alicerces Teciduais/química
10.
Int J Biol Macromol ; 104(Pt A): 564-575, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28602991

RESUMO

Currently, there is very strong interest to replace synthetic polymers with biological macromolecules of natural source for applications that interact with humans or the environment. This research describes the development of drug delivery hydrogels from natural polymers, starch, lignin and hemicelluloses by means of reactive extrusion. The hydrogels show a strong swelling ability dependent on pH which may be used to control diffusion rates of water and small molecules in and out of the gel. Also the hydrogels degradation rates were studied in a physiological solution (pH 7.4) for 15days. The results indicated that for all three macromolecules, lower molecular weight and higher level of plasticizer both increase the rate of weight loss of the hydrogels. The degradation was extremely reduced when the polymers were extruded in the presence of a catalyst. Finally the dynamic mechanical analysis revealed that the degradation of the hydrogels induce a significant reduction in the compressive modulus. This study demonstrates the characteristics and potential of natural polymers as a drug release system.


Assuntos
Portadores de Fármacos/química , Desenho de Fármacos , Hidrogéis/química , Lignina/química , Polissacarídeos/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Amido/química
11.
ChemSusChem ; 10(2): 305-323, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28029233

RESUMO

Hemicelluloses, due to their hydrophilic nature, may tend to be overlooked as a component in water-resistant product applications. However, their domains of use can be greatly expanded by chemical derivatization. Research in which hydrophobic derivatives of hemicelluloses or combinations of hemicelluloses with hydrophobic materials are used with to prepare films and composites is considered herein. Isolation methods that have been used to separate hemicellulose from biomass are also reviewed. Finally, the most useful pathways to change the hydrophilic character of hemicelluloses to hydrophobic are reviewed. In this way, the water resistance can be increased and applications of targeted water-resistant hemicellulose developed. Several applications of these materials are discussed.


Assuntos
Polissacarídeos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos/isolamento & purificação
12.
Front Pharmacol ; 7: 397, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27881962

RESUMO

Background: Cardiovascular diseases are the leading causes of morbidity and mortality worldwide. Cigarette smoking remains a global health epidemic with associated detrimental effects on the cardiovascular system. In this work, we investigated the effects of cigarette smoke exposure on cardiovascular system in an animal model. The study then evaluated the effects of antioxidants (AO), represented by pomegranate juice, on cigarette smoke induced cardiovascular injury. This study aims at evaluating the effect of pomegranate juice supplementation on the cardiovascular system of an experimental rat model of smoke exposure. Methods: Adult rats were divided into four different groups: Control, Cigarette smoking (CS), AO, and CS + AO. Cigarette smoke exposure was for 4 weeks (5 days of exposure/week) and AO group received pomegranate juice while other groups received placebo. Assessment of cardiovascular injury was documented by assessing different parameters of cardiovascular injury mediators including: (1) cardiac hypertrophy, (2) oxidative stress, (3) expression of inflammatory markers, (4) expression of Bradykinin receptor 1 (Bdkrb1), Bradykinin receptor 2 (Bdkrb2), and (5) altered expression of fibrotic/atherogenic markers [(Fibronectin (Fn1) and leptin receptor (ObR))]. Results: Data from this work demonstrated that cigarette smoke exposure induced cardiac hypertrophy, which was reduced upon administration of pomegranate in CS + AO group. Cigarette smoke exposure was associated with elevation in oxidative stress, significant increase in the expression of IL-1ß, TNFα, Fn1, and ObR in rat's aorta. In addition, an increase in aortic calcification was observed after 1 month of cigarette smoke exposure. Furthermore, cigarette smoke induced a significant up regulation in Bdkrb1 expression level. Finally, pomegranate supplementation exhibited cardiovascular protection assessed by the above findings and partly contributed to ameliorating cardiac hypertrophy in cigarette smoke exposed animals. Conclusion: Findings from this work showed that cigarette smoking exposure is associated with significant cardiovascular pathology such as cardiac hypertrophy, inflammation, pro-fibrotic, and atherogenic markers and aortic calcification in an animal model as assessed 1 month post exposure. Antioxidant supplementation prevented cardiac hypertrophy and attenuated indicators of atherosclerosis markers associated with cigarette smoke exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA