Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
J Neurosci ; 44(34)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38951036

RESUMO

The implementation of low-dimensional movement control by the central nervous system has been debated for decades. In this study, we investigated the dimensionality of the control signals received by spinal motor neurons when controlling either the ankle or knee joint torque. We first identified the low-dimensional latent factors underlying motor unit activity during torque-matched isometric contractions in male participants. Subsequently, we evaluated the extent to which motor units could be independently controlled. To this aim, we used an online control paradigm in which participants received the corresponding motor unit firing rates as visual feedback. We identified two main latent factors, regardless of the muscle group (vastus lateralis-medialis and gastrocnemius lateralis-medialis). The motor units of the gastrocnemius lateralis could be controlled largely independently from those of the gastrocnemius medialis during ankle plantarflexion. This dissociation of motor unit activity imposed similar behavior to the motor units that were not displayed in the feedback. Conversely, it was not possible to dissociate the activity of the motor units between the vastus lateralis and medialis muscles during the knee extension tasks. These results demonstrate that the number of latent factors estimated from linear dimensionality reduction algorithms does not necessarily reflect the dimensionality of volitional control of motor units. Overall, individual motor units were never controlled independently of all others but rather belonged to synergistic groups. Together, these findings provide evidence for a low-dimensional control of motor units constrained by common inputs, with notable differences between muscle groups.


Assuntos
Eletromiografia , Neurônios Motores , Músculo Esquelético , Humanos , Masculino , Adulto , Músculo Esquelético/fisiologia , Neurônios Motores/fisiologia , Adulto Jovem , Volição/fisiologia , Torque , Contração Isométrica/fisiologia , Articulação do Joelho/fisiologia , Articulação do Tornozelo/fisiologia
2.
PLoS Biol ; 20(12): e3001923, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542664

RESUMO

The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRß, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.


Assuntos
Neurônios Motores gama , Receptores de Estrogênio , Animais , Camundongos , Neurônios Motores gama/fisiologia , Movimento , Músculos , Propriocepção , Receptores de Estrogênio/metabolismo
3.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959262

RESUMO

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Assuntos
Biologia Computacional , Eletromiografia , Movimento , Músculo Esquelético , Eletromiografia/métodos , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Potenciais de Ação/fisiologia , Modelos Neurológicos
4.
Brain ; 147(10): 3583-3595, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501612

RESUMO

Paralysis of the muscles controlling the hand dramatically limits the quality of life for individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI individuals (C5-C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with residual neural pathways. In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of motor neuron changes after the injury and has the potential to promote movement restoration when integrated with assistive devices.


Assuntos
Mãos , Paralisia , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Humanos , Mãos/fisiopatologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Paralisia/reabilitação , Paralisia/fisiopatologia , Neurônios Motores/fisiologia , Interface Usuário-Computador , Eletromiografia , Medula Espinal/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto Jovem
5.
J Neurosci ; 43(16): 2860-2873, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36922028

RESUMO

The purpose of our study was to identify the low-dimensional latent components, defined hereafter as motor unit modes, underlying the discharge rates of the motor units in two knee extensors (vastus medialis and lateralis, eight men) and two hand muscles (first dorsal interossei and thenars, seven men and one woman) during submaximal isometric contractions. Factor analysis identified two independent motor unit modes that captured most of the covariance of the motor unit discharge rates. We found divergent distributions of the motor unit modes for the hand and vastii muscles. On average, 75% of the motor units for the thenar muscles and first dorsal interosseus were strongly correlated with the module for the muscle in which they resided. In contrast, we found a continuous distribution of motor unit modes spanning the two vastii muscle modules. The proportion of the muscle-specific motor unit modes was 60% for vastus medialis and 45% for vastus lateralis. The other motor units were either correlated with both muscle modules (shared inputs) or belonged to the module for the other muscle (15% for vastus lateralis). Moreover, coherence of the discharge rates between motor unit pools was explained by the presence of shared synaptic inputs. In simulations with 480 integrate-and-fire neurons, we demonstrate that factor analysis identifies the motor unit modes with high levels of accuracy. Our results indicate that correlated discharge rates of motor units that comprise motor unit modes arise from at least two independent sources of common input among the motor neurons innervating synergistic muscles.SIGNIFICANCE STATEMENT It has been suggested that the nervous system controls synergistic muscles by projecting common synaptic inputs to the engaged motor neurons. In our study, we reduced the dimensionality of the output produced by pools of synergistic motor neurons innervating the hand and thigh muscles during isometric contractions. We found two neural modules, each representing a different common input, that were each specific for one of the muscles. In the vastii muscles, we found a continuous distribution of motor unit modes spanning the two synergistic muscles. Some of the motor units from the homonymous vastii muscle were controlled by the dominant neural module of the other synergistic muscle. In contrast, we found two distinct neural modules for the hand muscles.


Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Feminino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps , Neurônios Motores/fisiologia , Mãos , Eletromiografia , Contração Muscular
6.
J Physiol ; 602(2): 281-295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059891

RESUMO

In two papers dated 1928 to 1929 in The Journal of Physiology, Edgar Adrian and Detlev Bronk described recordings from motor nerve and muscle fibres. The recordings from motor nerve fibres required progressive dissection of the nerve until a few fibres remained, from which isolated single fibre activity could be detected. The muscle fibre recordings were performed in humans during voluntary contractions with an intramuscular electrode - the concentric needle electrode - that they describe for the first time in the second paper. They recognised that muscle fibres would respond to each impulse sent by the innervating motor neurone and that therefore muscle fibre recordings provided information on the times of activation of the motor nerve fibres which were as accurate as a direct record from the nerve. These observations and the description of the concentric needle electrode opened the era of motor unit recordings in humans, which have continued for almost a century and have provided a comprehensive view of the neural control of movement at the motor unit level. Despite important advances in technology, many of the principles of motor unit behaviour that would be investigated in the subsequent decades were canvassed in the two papers by Adrian and Bronk. For example, they described the concomitant motor neurones' recruitment and rate coding for force modulation, synchronisation of motor unit discharges, and the dependence of discharge rate on motor unit recruitment threshold. Here, we summarise their observations and discuss the impact of their work. We highlight the advent of the concentric needle, and its subsequent influence on motor control research.


Assuntos
Neurônios Motores , Fibras Musculares Esqueléticas , Humanos , Fibras Musculares Esqueléticas/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico , Fibras Nervosas , Eletrodos , Eletromiografia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
7.
J Physiol ; 602(12): 2679-2688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38686581

RESUMO

After exposure of the human body to resistive exercise, the force-generation capacity of the trained muscles increases significantly. Despite decades of research, the neural and muscular stimuli that initiate these changes in muscle force are not yet fully understood. The study of these adaptations is further complicated by the fact that the changes may be partly specific to the training task. For example, short-term strength training does not always influence the neural drive to muscles during the early phase (<100 ms) of force development in rapid isometric contractions. Here we discuss some of the studies that have investigated neuromuscular adaptations underlying changes in maximal force and rate of force development produced by different strength training interventions, with a focus on changes observed at the level of spinal motor neurons. We discuss the different motor unit adjustments needed to increase force or speed, and the specificity of some of the adaptations elicited by differences in the training tasks.


Assuntos
Adaptação Fisiológica , Neurônios Motores , Músculo Esquelético , Treinamento Resistido , Humanos , Adaptação Fisiológica/fisiologia , Treinamento Resistido/métodos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
8.
Mov Disord ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113400

RESUMO

BACKGROUND: Essential tremor (ET) is a common debilitating condition, yet current treatments often fail to provide satisfactory relief. Transcutaneous spinal cord electrical stimulation (tSCS) has emerged as a potential noninvasive neuromodulation technique capable of disrupting the oscillatory activity underlying tremors. OBJECTIVE: This study aimed to investigate the potential of tSCS to disrupt tremor in a frequency-dependent manner in a cohort of patients with ET. METHODS: Eighteen patients with ET completed the study. The experiment consisted of 60-s postural tremor recording, during tSCS at tremor frequency, at 1 Hz, at 21 Hz, no stimulation, and trapezius stimulation. Tremor frequency and amplitude were analyzed and compared across the conditions. RESULTS: We found tremor amplitude reduction at tremor frequency stimulation significant only during the second half of the stimulation. The same stimulation resulted in the highest number of responders. tSCS at 1 Hz showed a trend toward decreased tremor amplitude in the latter half of stimulation. tSCS at 21 Hz did not produce any significant alterations in tremor, whereas trapezius stimulation exacerbated it. Notably, during tremor frequency stimulation, a subgroup of responders exhibited consistent synchronization between tremor phase and delivered stimulation, indicating tremor entrainment. CONCLUSIONS: Cervical tSCS holds promise for alleviating postural tremor in patients with ET when delivered at the subject's tremor frequency. The observed changes in tremor amplitude likely result from the modulation of spinal cord circuits by tSCS, which disrupts the oscillatory drive to muscles by affecting afferent pathways or spinal reflexes. However, the possibility of an interplay between spinal and supraspinal centers cannot be discounted. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

9.
PLoS Comput Biol ; 19(12): e1011606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060619

RESUMO

The computational simulation of human voluntary muscle contraction is possible with EMG-driven Hill-type models of whole muscles. Despite impactful applications in numerous fields, the neuromechanical information and the physiological accuracy such models provide remain limited because of multiscale simplifications that limit comprehensive description of muscle internal dynamics during contraction. We addressed this limitation by developing a novel motoneuron-driven neuromuscular model, that describes the force-generating dynamics of a population of individual motor units, each of which was described with a Hill-type actuator and controlled by a dedicated experimentally derived motoneuronal control. In forward simulation of human voluntary muscle contraction, the model transforms a vector of motoneuron spike trains decoded from high-density EMG signals into a vector of motor unit forces that sum into the predicted whole muscle force. The motoneuronal control provides comprehensive and separate descriptions of the dynamics of motor unit recruitment and discharge and decodes the subject's intention. The neuromuscular model is subject-specific, muscle-specific, includes an advanced and physiological description of motor unit activation dynamics, and is validated against an experimental muscle force. Accurate force predictions were obtained when the vector of experimental neural controls was representative of the discharge activity of the complete motor unit pool. This was achieved with large and dense grids of EMG electrodes during medium-force contractions or with computational methods that physiologically estimate the discharge activity of the motor units that were not identified experimentally. This neuromuscular model advances the state-of-the-art of neuromuscular modelling, bringing together the fields of motor control and musculoskeletal modelling, and finding applications in neuromuscular control and human-machine interfacing research.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Simulação por Computador , Recrutamento Neurofisiológico/fisiologia , Eletromiografia
10.
Sensors (Basel) ; 24(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38544073

RESUMO

The adoption of high-density electrode systems for human-machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human-machine interfaces.


Assuntos
Artefatos , Humanos , Eletromiografia , Eletrodos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA