RESUMO
Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and are associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas, independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastasis, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1-and not vascular endothelial growth factor receptor 1-to promote tumor cell survival. This critical tumor-stroma interaction-mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes-supports the development of therapies targeting PlGF/Nrp1 pathway.
Assuntos
Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Meduloblastoma/patologia , Neuropilina-1/metabolismo , Proteínas da Gravidez/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/metabolismo , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Comunicação Parácrina , Fator de Crescimento Placentário , Transplante Heterólogo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POET Regex , where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , PeptídeosRESUMO
PURPOSE: To develop a clinical CEST MR fingerprinting (CEST-MRF) method for brain tumor quantification using EPI acquisition and deep learning reconstruction. METHODS: A CEST-MRF pulse sequence originally designed for animal imaging was modified to conform to hardware limits on clinical scanners while keeping scan time under 2 min. Quantitative MRF reconstruction was performed using a deep reconstruction network (DRONE) to yield the water relaxation and chemical exchange parameters. The feasibility of the six parameter DRONE reconstruction was tested in simulations using a digital brain phantom. A healthy subject was scanned with the CEST-MRF sequence, conventional MRF and CEST sequences for comparison. Reproducibility was assessed via test-retest experiments and the concordance correlation coefficient calculated for white matter and gray matter. The clinical utility of CEST-MRF was demonstrated on four patients with brain metastases in comparison to standard clinical imaging sequences. Tumors were segmented into edema, solid core, and necrotic core regions and the CEST-MRF values compared to the contra-lateral side. RESULTS: DRONE reconstruction of the digital phantom yielded a normalized RMS error of ≤7% for all parameters. The CEST-MRF parameters were in good agreement with those from conventional MRF and CEST sequences and previous studies. The mean concordance correlation coefficient for all six parameters was 0.98 ± 0.01 in white matter and 0.98 ± 0.02 in gray matter. The CEST-MRF values in nearly all tumor regions were significantly different (P = 0.05) from each other and the contra-lateral side. CONCLUSION: Combination of EPI readout and deep learning reconstruction enabled fast, accurate and reproducible CEST-MRF in brain tumors.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Animais , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodosRESUMO
PURPOSE: To substantially shorten the acquisition time required for quantitative three-dimensional (3D) chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) imaging and allow for rapid chemical exchange parameter map reconstruction. METHODS: Three-dimensional CEST and MT magnetic resonance fingerprinting (MRF) datasets of L-arginine phantoms, whole-brains, and calf muscles from healthy volunteers, cancer patients, and cardiac patients were acquired using 3T clinical scanners at three different sites, using three different scanner models and coils. A saturation transfer-oriented generative adversarial network (GAN-ST) supervised framework was then designed and trained to learn the mapping from a reduced input data space to the quantitative exchange parameter space, while preserving perceptual and quantitative content. RESULTS: The GAN-ST 3D acquisition time was 42-52 s, 70% shorter than CEST-MRF. The quantitative reconstruction of the entire brain took 0.8 s. An excellent agreement was observed between the ground truth and GAN-based L-arginine concentration and pH values (Pearson's r > 0.95, ICC > 0.88, NRMSE < 3%). GAN-ST images from a brain-tumor subject yielded a semi-solid volume fraction and exchange rate NRMSE of 3 . 8 ± 1 . 3 % $$ 3.8\pm 1.3\% $$ and 4 . 6 ± 1 . 3 % $$ 4.6\pm 1.3\% $$ , respectively, and SSIM of 96 . 3 ± 1 . 6 % $$ 96.3\pm 1.6\% $$ and 95 . 0 ± 2 . 4 % $$ 95.0\pm 2.4\% $$ , respectively. The mapping of the calf-muscle exchange parameters in a cardiac patient, yielded NRMSE < 7% and SSIM > 94% for the semi-solid exchange parameters. In regions with large susceptibility artifacts, GAN-ST has demonstrated improved performance and reduced noise compared to MRF. CONCLUSION: GAN-ST can substantially reduce the acquisition time for quantitative semi-solid MT/CEST mapping, while retaining performance even when facing pathologies and scanner models that were not available during training.
Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , ArgininaRESUMO
Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promising contrast mechanism, capable of providing molecular information at sufficient resolution and amplified sensitivity. However, it has not yet become a routinely employed clinical technique, due to a variety of confounding factors affecting its contrast-weighted image interpretation and the inherently long scan time. CEST MR fingerprinting (MRF) is a novel approach for addressing these challenges, allowing simultaneous quantitation of several proton exchange parameters using rapid acquisition schemes. Recently, a number of deep-learning algorithms have been developed to further boost the performance and speed of CEST and semi-solid macromolecule magnetization transfer (MT) MRF. This review article describes the fundamental theory behind semisolid MT/CEST-MRF and its main applications. It then details supervised and unsupervised learning approaches for MRF image reconstruction and describes artificial intelligence (AI)-based pipelines for protocol optimization. Finally, practical considerations are discussed, and future perspectives are given, accompanied by basic demonstration code and data.
Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Prótons , Processamento de Imagem Assistida por Computador , AlgoritmosRESUMO
Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide, was designed to be 198 amino acids. SuperCESTide was expressed in E. coli and purified with size exclusion chromatography. The magnetic transfer ratio asymmetry generated by superCESTide was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine) and human protamine. These data show that novel peptides with sequences optimized in silico for CEST contrast that utilize a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Assuntos
Técnicas Biossensoriais , Escherichia coli , Humanos , Imageamento por Ressonância Magnética/métodos , Peptídeos , Protaminas , Aminoácidos , Meios de Contraste/químicaRESUMO
OBJECTIVES: Cryolipolysis uses tissue cooling to solidify lipids, preferentially damaging lipid-rich cells. Topical cooling is popular for the reduction of local subcutaneous fat. Injection of biocompatible ice-slurry is a recently introduced alternative. We developed and verified a quantitative model that simulates the heat exchange and phase changes involved, offering insights into ice-slurry injection for treating subcutaneous fat. METHODS: Finite element method was used to model the spatial and temporal progression of heat transfer between adipose tissue and injected ice-slurry, estimating dose-response relationships between properties of the slurry and size of tissue affected by cryolipolysis. Phase changes of both slurry and adipose tissue lipids were considered. An in vivo swine model was used to validate the numerical solutions. Oils with different lipid compositions were exposed to ice-slurry in vitro to evaluate the effects of lipid freezing temperature. Microscopy and nuclear magnetic resonance (NMR) were performed to detect lipid phase changes. RESULTS: A ball of granular ice was deposited at the injection site in subcutaneous fat. Total injected ice content determines both the effective cooling region of tissue, and the duration of tissue cooling. Water's high latent heat of fusion enables tissue cooling long after slurry injection. Slurry temperature affects the rate of tissue cooling. In swine, when 30 ml slurry injection at -3.5°C was compared to 15 ml slurry injection at -4.8°C (both with the same total ice content), the latter led to almost twice faster tissue cooling. NMR showed a large decrease in diffusion upon lipid crystallization; saturated lipids with higher freezing temperatures were more susceptible to solidification after ice-slurry injection. CONCLUSIONS: Total injected ice content determines both the volume of tissue treated by cryolipolysis and the cooling duration after slurry injection, while slurry temperature affects the cooling rate. Lipid saturation, which varies with diet and anatomic location, also has an important influence.
Assuntos
Temperatura Corporal , Gelo , Suínos , Animais , Temperatura , Tecido Adiposo , Temperatura AltaRESUMO
PURPOSE: To develop an automated machine-learning-based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. METHODS: An MR physics-governed AI system was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and in vivo mouse brains at 9.4T. RESULTS: The acquisition times for AutoCEST optimized schedules ranged from 35 to 71 s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearson's r=0.992 , p<0.0001 ), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearson's r=-0.161 , p=0.522 ). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearson's r=0.971 , p<0.0001 ) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearson's r=0.959 , p<0.0001 ). The AutoCEST in vivo mouse brain semi-solid proton volume fractions were lower in the cortex (12.77% ± 0.75%) compared to the white matter (19.80% ± 0.50%), as expected. CONCLUSION: AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps.
Assuntos
Prótons , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Redes Neurais de Computação , Imagens de FantasmasRESUMO
PURPOSE: As the field of CEST grows, various novel preparation periods using different parameters are being introduced. At the same time, large, multisite clinical studies require clearly defined protocols, especially across different vendors. Here, we propose a CEST definition standard using the open Pulseq format for a shareable, simple, and exact definition of CEST protocols. METHODS: We present the benefits of such a standard in three ways: (1) an open database on GitHub, where fully defined, human-readable CEST protocols can be shared; (2) an open-source Bloch-McConnell simulation to test and optimize CEST preparation periods in silico; and (3) a hybrid MR sequence that plays out the CEST preparation period and can be combined with any existing readout module. RESULTS: The exact definition of the CEST preparation period, in combination with the flexible simulation, leads to a good match between simulations and measurements. The standard allowed finding consensus on three amide proton transfer-weighted protocols that could be compared in healthy subjects and a tumor patient. In addition, we could show coherent multisite results for a sophisticated CEST method, highlighting the benefits regarding protocol sharing and reproducibility. CONCLUSION: With Pulseq-CEST, we provide a straightforward approach to standardize, share, simulate, and measure different CEST preparation schemes, which are inherently completely defined.
Assuntos
Imageamento por Ressonância Magnética , Prótons , Amidas , Simulação por Computador , Humanos , Reprodutibilidade dos TestesRESUMO
Background Liver biopsy is the reference standard to diagnose nonalcoholic steatohepatitis (NASH) but is invasive with potential complications. Purpose To evaluate molecular MRI with type 1 collagen-specific probe EP-3533 and allysine-targeted fibrogenesis probe Gd-Hyd, MR elastography, and native T1 to characterize fibrosis and to assess treatment response in a rat model of NASH. Materials and Methods MRI was performed prospectively (June-November 2018) in six groups of male Wistar rats (a) age- and (b) weight-matched animals received standard chow (n = 12 per group); (c) received choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or (d) 9 weeks (n = 8 per group); (e) were fed 6 weeks of CDAHFD and switched to standard chow for 3 weeks (n = 12); (f) were fed CDAHFD for 9 weeks with daily treatment of elafibranor beginning at week 6 (n = 14). Differences in imaging measurements and tissue analyses among groups were tested with one-way analysis of variance. The ability of each imaging measurement to stage fibrosis was quantified by using area under the receiver operating characteristic curve (AUC) with quantitative digital pathology (collagen proportionate area [CPA]) as reference standard. Optimal cutoff values for distinguishing advanced fibrosis were used to assess treatment response. Results AUC for distinguishing fibrotic (CPA >4.8%) from nonfibrotic (CPA ≤4.8%) livers was 0.95 (95% confidence interval [CI]: 0.91, 1.00) for EP-3533, followed by native T1, Gd-Hyd, and MR elastography with AUCs of 0.90 (95% CI: 0.83, 0.98), 0.84 (95% CI: 0.74, 0.95), and 0.65 (95% CI: 0.51, 0.79), respectively. AUCs for discriminating advanced fibrosis (CPA >10.3%) were 0.86 (95% CI: 0.76, 0.97), 0.96 (95% CI: 0.90, 1.01), 0.84 (95% CI: 0.70, 0.98), and 0.74 (95% CI: 0.63, 0.86) for EP-3533, Gd-Hyd, MR elastography, and native T1, respectively. Gd-Hyd MRI had the highest accuracy (24 of 26, 92%; 95% CI: 75%, 99%) in identifying responders and nonresponders in the treated groups compared with MR elastography (23 of 26, 88%; 95% CI: 70%, 98%), EP-3533 (20 of 26, 77%; 95% CI: 56%, 91%), and native T1 (14 of 26, 54%; 95% CI: 33%, 73%). Conclusion Collagen-targeted molecular MRI most accurately detected early onset of fibrosis, whereas the fibrogenesis probe Gd-Hyd proved most accurate for detecting treatment response. © RSNA, 2020 Online supplemental material is available for this article.
Assuntos
Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/terapia , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Chalconas/uso terapêutico , Dieta/métodos , Modelos Animais de Doenças , Fígado/diagnóstico por imagem , Cirrose Hepática/etiologia , Masculino , Hepatopatia Gordurosa não Alcoólica/complicações , Propionatos/uso terapêutico , Estudos Prospectivos , Ratos , Ratos WistarRESUMO
PURPOSE: To understand the influence of various acquisition parameters on the ability of CEST MR-Fingerprinting (MRF) to discriminate different chemical exchange parameters and to provide tools for optimal acquisition schedule design and parameter map reconstruction. METHODS: Numerical simulations were conducted using a parallel computing implementation of the Bloch-McConnell equations, examining the effect of TR, TE, flip-angle, water T1 and T2 , saturation-pulse duration, power, and frequency on the discrimination ability of CEST-MRF. A modified Euclidean distance matching metric was evaluated and compared to traditional dot product matching. L-Arginine phantoms of various concentrations and pH were scanned at 4.7T and the results compared to numerical findings. RESULTS: Simulations for dot product matching demonstrated that the optimal flip-angle and saturation times are 30∘ and 1100 ms, respectively. The optimal maximal saturation power was 3.4 µT for concentrated solutes with a slow exchange rate, and 5.2 µT for dilute solutes with medium-to-fast exchange rates. Using the Euclidean distance matching metric, much lower maximum saturation powers were required (1.6 and 2.4 µT, respectively), with a slightly longer saturation time (1500 ms) and 90∘ flip-angle. For both matching metrics, the discrimination ability increased with the repetition time. The experimental results were in agreement with simulations, demonstrating that more than a 50% reduction in scan-time can be achieved by Euclidean distance-based matching. CONCLUSIONS: Optimization of the CEST-MRF acquisition schedule is critical for obtaining the best exchange parameter accuracy. The use of Euclidean distance-based matching of signal trajectories simultaneously improved the discrimination ability and reduced the scan time and maximal saturation power required.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Arginina/química , Simulação por Computador , Humanos , Concentração de Íons de Hidrogênio , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Lineares , Imagens de Fantasmas , Linguagens de Programação , Prótons , Reprodutibilidade dos Testes , SoftwareRESUMO
Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of â¼3-nm inorganic cores and â¼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.
Assuntos
Meios de Contraste/farmacocinética , Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Albuminas/química , Albuminas/farmacocinética , Animais , Meios de Contraste/química , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/urina , Gadolínio DTPA/química , Gadolínio DTPA/farmacocinética , Gadolínio DTPA/urina , Humanos , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Ácido Oleico/química , Tamanho da Partícula , Distribuição TecidualRESUMO
Glioblastomas (GBMs) rapidly become refractory to anti-VEGF therapies. We previously demonstrated that ectopic overexpression of angiopoietin-2 (Ang-2) compromises the benefits of anti-VEGF receptor (VEGFR) treatment in murine GBM models and that circulating Ang-2 levels in GBM patients rebound after an initial decrease following cediranib (a pan-VEGFR tyrosine kinase inhibitor) administration. Here we tested whether dual inhibition of VEGFR/Ang-2 could improve survival in two orthotopic models of GBM, Gl261 and U87. Dual therapy using cediranib and MEDI3617 (an anti-Ang-2-neutralizing antibody) improved survival over each therapy alone by delaying Gl261 growth and increasing U87 necrosis, effectively reducing viable tumor burden. Consistent with their vascular-modulating function, the dual therapies enhanced morphological normalization of vessels. Dual therapy also led to changes in tumor-associated macrophages (TAMs). Inhibition of TAM recruitment using an anti-colony-stimulating factor-1 antibody compromised the survival benefit of dual therapy. Thus, dual inhibition of VEGFR/Ang-2 prolongs survival in preclinical GBM models by reducing tumor burden, improving normalization, and altering TAMs. This approach may represent a potential therapeutic strategy to overcome the limitations of anti-VEGFR monotherapy in GBM patients by integrating the complementary effects of anti-Ang2 treatment on vessels and immune cells.
Assuntos
Anticorpos Antineoplásicos/farmacologia , Glioblastoma , Macrófagos , Proteínas de Neoplasias , Neoplasias Experimentais , Neovascularização Patológica , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular , Ribonuclease Pancreático , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ribonuclease Pancreático/antagonistas & inibidores , Ribonuclease Pancreático/metabolismoRESUMO
Purpose To evaluate the biodistribution, metabolism, and pharmacokinetics of a new type I collagen-targeted magnetic resonance (MR) probe, CM-101, and to assess its ability to help quantify liver fibrosis in animal models. Materials and Methods Biodistribution, pharmacokinetics, and stability of CM-101 in rats were measured with mass spectrometry. Bile duct-ligated (BDL) and sham-treated rats were imaged 19 days after the procedure by using a 1.5-T clinical MR imaging unit. Mice were treated with carbon tetrachloride (CCl4) or with vehicle two times a week for 10 weeks and were imaged with a 7.0-T preclinical MR imaging unit at baseline and 1 week after the last CCl4 treatment. Animals were imaged before and after injection of 10 µmol/kg CM-101. Change in contrast-to-noise ratio (ΔCNR) between liver and muscle tissue after CM-101 injection was used to quantify liver fibrosis. Liver tissue was analyzed for Sirius Red staining and hydroxyproline content. The institutional subcommittee for research animal care approved all in vivo procedures. Results CM-101 demonstrated rapid blood clearance (half-life = 6.8 minutes ± 2.4) and predominately renal elimination in rats. Biodistribution showed low tissue gadolinium levels at 24 hours (<3.9% injected dose [ID]/g ± 0.6) and 10-fold lower levels at 14 days (<0.33% ID/g ± 12) after CM-101 injection with negligible accumulation in bone (0.07% ID/g ± 0.02 and 0.010% ID/g ± 0.004 at 1 and 14 days, respectively). ΔCNR was significantly (P < .001) higher in BDL rats (13.6 ± 3.2) than in sham-treated rats (5.7 ± 4.2) and in the CCl4-treated mice (18.3 ± 6.5) compared with baseline values (5.2 ± 1.0). Conclusion CM-101 demonstrated fast blood clearance and whole-body elimination, negligible accumulation of gadolinium in bone or tissue, and robust detection of fibrosis in rat BDL and mouse CCl4 models of liver fibrosis. © RSNA, 2017 Online supplemental material is available for this article.
Assuntos
Fibrose/patologia , Gadolínio/farmacocinética , Cirrose Hepática/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética , Polissacarídeos Bacterianos/farmacocinética , Animais , Tetracloreto de Carbono/farmacocinética , Modelos Animais de Doenças , Fibrose/diagnóstico por imagem , Meia-Vida , Fígado/diagnóstico por imagem , Espectrometria de Massas , Camundongos , Ratos , Distribuição TecidualRESUMO
PURPOSE: To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. METHODS: We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the Nα -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 µT; in vivo: 0-4 µT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T1 and T2 relaxation times. RESULTS: The chemical exchange rates of the Nα -amine protons of L-Arg were significantly (P < 0.0001) correlated with the rates measured with the quantitation of exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P < 0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R2 = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CONCLUSION: CEST-MRF provides a method for fast, quantitative CEST imaging.
Assuntos
Substância Cinzenta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Algoritmos , Aminas/química , Animais , Arginina/química , Encéfalo/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Aumento da Imagem/métodos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Prótons , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Hepatic fibrosis is associated with an overproduction of matrix proteins and a pathological increase of liver stiffness. Noninvasive magnetic resonance (MR) quantification of matrix can be assessed with a collagen-binding molecular MR probe and stiffness by MR elastography, complementary techniques. This study used both imaging techniques to more accurately stage hepatic fibrosis in a rat model. Thirty rats with varying levels of diethylnitrosamine-induced liver fibrosis were imaged before and 45 minutes after injection of collagen-specific probe EP-3533. MR elastography was performed in the same imaging session. Changes in liver relaxation rate post-EP-3533 and liver stiffness were compared to the collagen proportional area determined by histology and to Ishak scoring using receiver operating characteristic analysis. Collagen imaging was most sensitive to early fibrosis, while elastography was more sensitive to advanced fibrosis. This complementary feature enabled the formulation of a composite model using multivariate analysis of variance. This model incorporated the discriminating advantages of both MR techniques, resulting in more accurate staging throughout fibrotic progression. CONCLUSION: Collagen molecular MR imaging is complementary to MR elastography, and combining the two techniques in a single exam leads to increased diagnostic accuracy for all stages of fibrosis. (Hepatology 2017;65:1015-1025).
Assuntos
Técnicas de Imagem por Elasticidade/métodos , Cirrose Hepática/patologia , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Análise de Variância , Animais , Biópsia por Agulha , Dietilnitrosamina/farmacologia , Modelos Animais de Doenças , Imuno-Histoquímica , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/diagnóstico , Masculino , Análise Multivariada , Distribuição Aleatória , Ratos , Ratos Wistar , Índice de Gravidade de DoençaRESUMO
Chemotherapy for bone tumors is a major challenge because of the inability of therapeutics to penetrate dense bone mineral. We hypothesize that a nanostructured formulation with high affinity for bone could deliver drug to the tumor while minimizing off-target toxicity. Here, we evaluated the efficacy and toxicity of a novel bone-targeted, pH-sensitive liposomal formulation containing doxorubicin in an animal model of bone metastasis. Biodistribution studies with the liposome showed good uptake in tumor, but low accumulation of doxorubicin in the heart. Mice treated with the bone-targeted liposome formulation showed a 70% reduction in tumor volume, compared to 35% reduction for free doxorubicin at the same dose. Both cardiac toxicity and overall mortality were significantly lower for animals treated with the bone-targeted liposomes compared to free drug. Bone-targeted, pH-sensitive, doxorubicin containing liposomes represent a promising approach to selectively delivering doxorubicin to bone tumors while minimizing cardiac toxicity.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Lipossomos , Animais , Antibióticos Antineoplásicos/toxicidade , Neoplasias Ósseas/secundário , Cardiotoxicidade , Doxorrubicina/toxicidade , Concentração de Íons de Hidrogênio , Camundongos , Distribuição TecidualRESUMO
We introduce a new biochemically responsive Mn-based MRI contrast agent that provides a 9-fold change in relaxivity via switching between the Mn3+ and Mn2+ oxidation states. Interchange between oxidation states is promoted by a "Janus" ligand that isomerizes between binding modes that favor Mn3+ or Mn2+. It is the only ligand that supports stable complexes of Mn3+ and Mn2+ in biological milieu. Rapid interconversion between oxidation states is mediated by peroxidase activity (oxidation) and l-cysteine (reduction). This Janus system provides a new paradigm for the design of biochemically responsive MRI contrast agents.
Assuntos
Quelantes/química , Meios de Contraste/química , Cisteína/química , Imageamento por Ressonância Magnética , Manganês/química , Peroxidase/química , Quelantes/metabolismo , Meios de Contraste/metabolismo , Cisteína/metabolismo , Humanos , Manganês/metabolismo , Estrutura Molecular , Oxirredução , Peroxidase/metabolismoRESUMO
BACKGROUND & AIMS: Liver biopsy, the gold standard for assessing liver fibrosis, suffers from limitations due to sampling error and invasiveness. There is therefore a critical need for methods to non-invasively quantify fibrosis throughout the entire liver. The goal of this study was to use molecular Magnetic Resonance Imaging (MRI) of Type I collagen to non-invasively image liver fibrosis and assess response to rapamycin therapy. METHODS: Liver fibrosis was induced in rats by bile duct ligation (BDL). MRI was performed 4, 10, or 18 days following BDL. Some BDL rats were treated daily with rapamycin starting on day 4 and imaged on day 18. A three-dimensional (3D) inversion recovery MRI sequence was used to quantify the change in liver longitudinal relaxation rate (ΔR1) induced by the collagen-targeted probe EP-3533. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for Sirius Red staining and hydroxyproline content. RESULTS: ΔR1 increased significantly with time following BDL compared to controls in agreement with ex vivo measures of increasing fibrosis. Receiver operating characteristic curve analysis demonstrated the ability of ΔR1 to detect liver fibrosis and distinguish intermediate and late stages of fibrosis. EP-3533 MRI correctly characterized the response to rapamycin in 11 out of 12 treated rats compared to the standard of collagen proportional area (CPA). 3D MRI enabled characterization of disease heterogeneity throughout the whole liver. CONCLUSIONS: EP-3533 allowed for staging of liver fibrosis, assessment of response to rapamycin therapy, and demonstrated the ability to detect heterogeneity in liver fibrosis.
Assuntos
Cirrose Hepática Experimental/patologia , Imageamento por Ressonância Magnética/métodos , Sirolimo/uso terapêutico , Animais , Ductos Biliares , Modelos Animais de Doenças , Técnicas de Imagem por Elasticidade , Ligadura , Cirrose Hepática Experimental/tratamento farmacológico , Masculino , Curva ROC , RatosRESUMO
PURPOSE: To (a) evaluate whether the lysine-rich protein (LRP) magnetic resonance (MR) imaging reporter gene can be engineered into G47Δ, a herpes simplex-derived oncolytic virus that is currently being tested in clinical trials, without disrupting its therapeutic effectiveness and (b) establish the ability of chemical exchange saturation transfer (CEST) MR imaging to demonstrate G47Δ-LRP. MATERIALS AND METHODS: The institutional subcommittee for research animal care approved all in vivo procedures. Oncolytic herpes simplex virus G47Δ, which carried the LRP gene, was constructed and tested for its capacity to replicate in cancer cells and express LRP in vitro. The LRP gene was detected through CEST imaging of lysates derived from cells infected with G47Δ-LRP or the control G47Δ-empty virus. G47Δ-LRP was then tested for its therapeutic effectiveness and detection with CEST MR imaging in vivo. Images of rat gliomas were acquired before and 8-10 hours after injection of G47Δ-LRP (n = 7) or G47Δ-empty virus (n = 6). Group comparisons were analyzed with a paired t test. RESULTS: No significant differences were observed in viral replication or therapeutic effectiveness between G47Δ-LRP and G47Δ-empty virus. An increase in CEST image contrast was observed in cell lysates (mean ± standard deviation, 0.52% ± 0.06; P = .01) and in tumors (1.1% ± 0.3, P = .02) after infection with G47Δ-LRP but not G47Δ-empty viruses. No histopathologic differences were observed between tumors infected with G47Δ-LRP and G47Δ-empty virus. CONCLUSION: This study has demonstrated the ability of CEST MR imaging to show G47Δ-LRP at acute stages of viral infection. The introduction of the LRP transgene had no effect on the viral replication or therapeutic effectiveness. This can aid in development of the LRP gene as a reporter for the real-time detection of viral spread. Online supplemental material is available for this article.