Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(1): 3-20, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611326

RESUMO

The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.


Assuntos
SARS-CoV-2/fisiologia , Internalização do Vírus , Animais , Evolução Molecular , Humanos , Fusão de Membrana , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
Immunity ; 56(10): 2408-2424.e6, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531955

RESUMO

V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas , Animais , Camundongos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Antígenos Virais , Produtos do Gene env do Vírus da Imunodeficiência Humana
3.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32783919

RESUMO

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , RNA Mensageiro/imunologia , RNA Viral/imunologia , Vacinas Virais/administração & dosagem , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/virologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Furina/genética , Furina/imunologia , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunização/métodos , Imunogenicidade da Vacina , Memória Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas , Vacinas Virais/biossíntese , Vacinas Virais/genética
4.
Nature ; 588(7838): 491-497, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33149299

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) has previously been identified as an endosomal protein that blocks viral infection1-3. Here we studied clinical cohorts of patients with B cell leukaemia and lymphoma, and identified IFITM3 as a strong predictor of poor outcome. In normal resting B cells, IFITM3 was minimally expressed and mainly localized in endosomes. However, engagement of the B cell receptor (BCR) induced both expression of IFITM3 and phosphorylation of this protein at Tyr20, which resulted in the accumulation of IFITM3 at the cell surface. In B cell leukaemia, oncogenic kinases phosphorylate IFITM3 at Tyr20, which causes constitutive localization of this protein at the plasma membrane. In a mouse model, Ifitm3-/- naive B cells developed in normal numbers; however, the formation of germinal centres and the production of antigen-specific antibodies were compromised. Oncogenes that induce the development of leukaemia and lymphoma did not transform Ifitm3-/- B cells. Conversely, the phosphomimetic IFITM3(Y20E) mutant induced oncogenic PI3K signalling and initiated the transformation of premalignant B cells. Mechanistic experiments revealed that IFITM3 functions as a PIP3 scaffold and central amplifier of PI3K signalling. The amplification of PI3K signals depends on IFITM3 using two lysine residues (Lys83 and Lys104) in its conserved intracellular loop as a scaffold for the accumulation of PIP3. In Ifitm3-/- B cells, lipid rafts were depleted of PIP3, which resulted in the defective expression of over 60 lipid-raft-associated surface receptors, and impaired BCR signalling and cellular adhesion. We conclude that the phosphorylation of IFITM3 that occurs after B cells encounter antigen induces a dynamic switch from antiviral effector functions in endosomes to a PI3K amplification loop at the cell surface. IFITM3-dependent amplification of PI3K signalling, which in part acts downstream of the BCR, is critical for the rapid expansion of B cells with high affinity to antigen. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signalling complexes and amplify PI3K signalling for malignant transformation.


Assuntos
Linfócitos B/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Animais , Antígenos CD19/metabolismo , Linfócitos B/enzimologia , Linfócitos B/imunologia , Linfócitos B/patologia , Transformação Celular Neoplásica , Feminino , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/patologia , Humanos , Integrinas/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Modelos Moleculares , Fosforilação , Receptores de Antígenos de Linfócitos B/metabolismo
5.
Nature ; 568(7752): 415-419, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971821

RESUMO

The HIV-1 envelope glycoprotein (Env) trimer mediates cell entry and is conformationally dynamic1-8. Imaging by single-molecule fluorescence resonance energy transfer (smFRET) has revealed that, on the surface of intact virions, mature pre-fusion Env transitions from a pre-triggered conformation (state 1) through a default intermediate conformation (state 2) to a conformation in which it is bound to three CD4 receptor molecules (state 3)8-10. It is currently unclear how these states relate to known structures. Breakthroughs in the structural characterization of the HIV-1 Env trimer have previously been achieved by generating soluble and proteolytically cleaved trimers of gp140 Env that are stabilized by a disulfide bond, an isoleucine-to-proline substitution at residue 559 and a truncation at residue 664 (SOSIP.664 trimers)5,11-18. Cryo-electron microscopy studies have been performed with C-terminally truncated Env of the HIV-1JR-FL strain in complex with the antibody PGT15119. Both approaches have revealed similar structures for Env. Although these structures have been presumed to represent the pre-triggered state 1 of HIV-1 Env, this hypothesis has never directly been tested. Here we use smFRET to compare the conformational states of Env trimers used for structural studies with native Env on intact virus. We find that the constructs upon which extant high-resolution structures are based predominantly occupy downstream conformations that represent states 2 and 3. Therefore, the structure of the pre-triggered state-1 conformation of viral Env that has been identified by smFRET and that is preferentially stabilized by many broadly neutralizing antibodies-and thus of interest for the design of immunogens-remains unknown.


Assuntos
Transferência Ressonante de Energia de Fluorescência , HIV-1/química , Imagem Individual de Molécula , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Animais , Anticorpos Neutralizantes/imunologia , Bovinos , Dissulfetos/química , Células HEK293 , HIV-1/genética , HIV-1/imunologia , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
6.
Cell ; 139(7): 1243-54, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064371

RESUMO

Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens.


Assuntos
Infecções por Flavivirus/imunologia , Influenza Humana/imunologia , Proteínas de Membrana/imunologia , Animais , Antígenos de Diferenciação , Linhagem Celular Tumoral , Vírus da Dengue/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A/imunologia , Interferons/imunologia , Camundongos , Proteínas de Ligação a RNA/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34261793

RESUMO

Three variable 2 (V2) loops of HIV-1 envelope glycoprotein (Env) trimer converge at the Env apex to form the epitope of an important classes of HIV-1 broadly neutralizing antibodies (bNAbs). These V2-glycan/apex antibodies are exceptionally potent but less broad (∼60 to 75%) than many other bNAbs. Their CDRH3 regions are typically long, acidic, and tyrosine sulfated. Tyrosine sulfation complicates efforts to improve these antibodies through techniques such as phage or yeast display. To improve the breadth of CAP256-VRC26.25 (VRC26.25), a very potent apex antibody, we adapted and extended a B cell display approach. Specifically, we used CRISPR/Cas12a to introduce VRC26.25 heavy- and light-chain genes into their respective loci in a B cell line, ensuring that each cell expresses a single VRC26.25 variant. We then diversified these loci through activation-induced cytidine deaminase-mediated hypermutation and homology-directed repair using randomized CDRH3 sequences as templates. Iterative sorting with soluble Env trimers and further randomization selected VRC26.25 variants with successively improving affinities. Three mutations in the CDRH3 region largely accounted for this improved affinity, and VRC26.25 modified with these mutations exhibited greater breadth and potency than the original antibody. Our data describe a broader and more-potent form of VRC26.25 as well as an approach useful for improving the breadth and potency of antibodies with functionally important posttranslational modifications.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Engenharia de Proteínas , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
8.
PLoS Pathog ; 17(1): e1009212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465165

RESUMO

Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.


Assuntos
COVID-19/prevenção & controle , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops/virologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero/virologia , Tratamento Farmacológico da COVID-19
9.
PLoS Pathog ; 17(4): e1009501, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836016

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , COVID-19/virologia , Quirópteros/metabolismo , SARS-CoV-2/genética , Animais , COVID-19/genética , Quirópteros/genética , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Mol Ther ; 30(1): 184-197, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740791

RESUMO

B cells have been engineered ex vivo to express an HIV-1 broadly neutralizing antibody (bNAb). B cell reprograming may be scientifically and therapeutically useful, but current approaches limit B cell repertoire diversity and disrupt the organization of the heavy-chain locus. A more diverse and physiologic B cell repertoire targeting a key HIV-1 epitope could facilitate evaluation of vaccines designed to elicit bNAbs, help identify more potent and bioavailable bNAb variants, or directly enhance viral control in vivo. Here we address the challenges of generating such a repertoire by replacing the heavy-chain CDR3 (HCDR3) regions of primary human B cells. To do so, we identified and utilized an uncharacterized Cas12a ortholog that recognizes PAM motifs present in human JH genes. We also optimized the design of 200 nucleotide homology-directed repair templates (HDRT) by minimizing the required 3'-5' deletion of the HDRT-complementary strand. Using these techniques, we edited primary human B cells to express a hemagglutinin epitope tag and the HCDR3 regions of the bNAbs PG9 and PG16. Those edited with bNAb HCDR3 efficiently bound trimeric HIV-1 antigens, implying they could affinity mature in vivo in response to the same antigens. This approach generates diverse B cell repertoires recognizing a key HIV-1 neutralizing epitope.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Anticorpos Anti-HIV/genética , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Humanos
12.
Biochem Biophys Res Commun ; 538: 108-115, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33220921

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos/genética , Ácido Aspártico/genética , Sítios de Ligação/genética , Glicina/genética , Humanos , Mutação , Domínios Proteicos/genética
13.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847856

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has caused >20 million infections and >750,000 deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, has been found closely related to the bat coronavirus strain RaTG13 (Bat-CoV RaTG13) and a recently identified pangolin coronavirus (Pangolin-CoV-2020). Here, we first investigated the ability of SARS-CoV-2 and three related coronaviruses to utilize animal orthologs of angiotensin-converting enzyme 2 (ACE2) for cell entry. We found that ACE2 orthologs of a wide range of domestic and wild mammals, including camels, cattle, horses, goats, sheep, cats, rabbits, and pangolins, were able to support cell entry of SARS-CoV-2, suggesting that these species might be able to harbor and spread this virus. In addition, the pangolin and bat coronaviruses, Pangolin-CoV-2020 and Bat-CoV RaTG13, were also found able to utilize human ACE2 and a number of animal-ACE2 orthologs for cell entry, indicating risks of spillover of these viruses into humans in the future. We then developed potently anticoronavirus ACE2-Ig proteins that are broadly effective against the four distinct coronaviruses. In particular, through truncating ACE2 at its residue 740 but not 615, introducing a D30E mutation, and adopting an antibody-like tetrameric-ACE2 configuration, we generated an ACE2-Ig variant that neutralizes SARS-CoV-2 at picomolar range. These data demonstrate that the improved ACE2-Ig variants developed in this study could potentially be developed to protect from SARS-CoV-2 and some other SARS-like viruses that might spillover into humans in the future.IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the currently uncontrolled coronavirus disease 2019 (COVID-19) pandemic. It is important to study the host range of SARS-CoV-2, because some domestic species might harbor the virus and transmit it back to humans. In addition, insight into the ability of SARS-CoV-2 and SARS-like viruses to utilize animal orthologs of the SARS-CoV-2 receptor ACE2 might provide structural insight into improving ACE2-based viral entry inhibitors. In this study, we found that ACE2 orthologs of a wide range of domestic and wild animals can support cell entry of SARS-CoV-2 and three related coronaviruses, providing insights into identifying animal hosts of these viruses. We also developed recombinant ACE2-Ig proteins that are able to potently block these viral infections, providing a promising approach to developing antiviral proteins broadly effective against these distinct coronaviruses.


Assuntos
Anticorpos Neutralizantes/genética , Betacoronavirus/fisiologia , Coronavirus/classificação , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/química , Betacoronavirus/genética , Coronavirus/genética , Coronavirus/fisiologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Modelos Químicos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Virais/química , Receptores Virais/genética , Proteínas Recombinantes/genética , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacos
14.
Nature ; 519(7541): 87-91, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25707797

RESUMO

Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 µg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 µg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 µg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.


Assuntos
Antígenos CD4/imunologia , Dependovirus/genética , Imunoglobulinas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Internalização do Vírus , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Antagonistas dos Receptores CCR5/imunologia , Antígenos CD4/genética , Feminino , Terapia Genética , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , HIV-2/imunologia , Imunoglobulinas/genética , Macaca mulatta , Masculino , Testes de Neutralização , Receptores CCR5/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
15.
Biochemistry ; 59(37): 3473-3486, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32857495

RESUMO

Oligonucleotide aptamers are found in prokaryotes and eukaryotes, and they can be selected from large synthetic libraries to bind protein or small-molecule ligands with high affinities and specificities. Aptamers can function as biosensors, as protein recognition elements, and as components of riboswitches allowing ligand-dependent control of gene expression. One of the best studied laboratory-selected aptamers binds the antibiotic tetracycline, but it binds with a much lower affinity to the closely related but more bioavailable antibiotic doxycycline. Here we report enrichment of doxycycline binding aptamers from a selectively randomized library of tetracycline aptamer variants over four selection rounds. Selected aptamers distinguish between doxycycline, which they bind with dissociation constants of approximately 7 nM, and tetracycline, which they bind undetectably. They thus function as orthogonal complements to the original tetracycline aptamer. Unexpectedly, doxycycline aptamers adopt a conformation distinct from that of the tetracycline aptamer and depend on constant regions originally installed as primer binding sites. We show that the fluorescence emission intensity of doxycycline increases upon aptamer binding, permitting their use as biosensors. This new class of aptamers can be used in multiple contexts where doxycycline detection, or doxycycline-mediated regulation, is necessary.


Assuntos
Antibacterianos/química , Aptâmeros de Nucleotídeos/química , Doxiciclina/química , RNA/química , Técnica de Seleção de Aptâmeros/métodos , Tetraciclina/química , Antibacterianos/metabolismo , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Doxiciclina/metabolismo , Biblioteca Gênica , Ligantes , Tetraciclina/metabolismo
16.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068428

RESUMO

The engineered antibody-like entry inhibitor eCD4-Ig neutralizes every human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus isolate it has been tested against. The exceptional breadth of eCD4-Ig derives from its ability to closely and simultaneously emulate the HIV-1 receptor CD4 and coreceptors, either CCR5 or CXCR4. Here we investigated whether viral escape from eCD4-Ig is more difficult than that from CD4-Ig or the CD4-binding site antibody NIH45-46. We observed that a viral swarm selected with high concentrations of eCD4-Ig was increasingly resistant to but did not fully escape from eCD4-Ig. In contrast, viruses selected under the same conditions with CD4-Ig or NIH45-46 fully escaped from those inhibitors. eCD4-Ig-resistant viruses acquired unique changes in the V2 apex, V3, V4, and CD4-binding regions of the HIV-1 envelope glycoprotein (Env). Most of the alterations did not directly affect neutralization by eCD4-Ig or neutralizing antibodies. However, alteration of Q428 to an arginine or lysine resulted in markedly greater resistance to eCD4-Ig and CD4-Ig, with correspondingly dramatic losses in infectivity and greater sensitivity to a V3 antibody and to serum from an infected individual. Compensatory mutations in the V3 loop (N301D) and in the V2 apex (K171E) partially restored viral fitness without affecting serum or eCD4-Ig sensitivity. Collectively, these data suggest that multiple mutations will be necessary to fully escape eCD4-Ig without loss of viral fitness.IMPORTANCE HIV-1 broadly neutralizing antibodies (bNAbs) and engineered antibody-like inhibitors have been compared for their breadths, potencies, and in vivo half-lives. However, a key limitation in the use of antibodies to treat an established HIV-1 infection is the rapid emergence of fully resistant viruses. Entry inhibitors of similar breadths and potencies can differ in the ease with which viral escape variants arise. Here we show that HIV-1 escape from the potent and exceptionally broad entry inhibitor eCD4-Ig is more difficult than that from CD4-Ig or the bNAb NIH45-46. Indeed, full escape was not observed under conditions under which escape from CD4-Ig or NIH45-46 was readily detected. Moreover, viruses that were partially resistant to eCD4-Ig were markedly less infective and more sensitive to antibodies in the serum of an infected person. These data suggest that eCD4-Ig will be more difficult to escape and that even partial escape will likely extract a high fitness cost.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-2/imunologia , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Humanos
17.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541842

RESUMO

Broadly neutralizing antibodies (bNAbs) target five major epitopes on the HIV-1 envelope glycoprotein (Env). The most potent bNAbs have median half-maximal inhibitory concentration (IC50) values in the nanomolar range, and the broadest bNAbs neutralize up to 98% of HIV-1 strains. The engineered HIV-1 entry inhibitor eCD4-Ig has greater breadth than bNAbs and similar potency. eCD4-Ig is markedly more potent than CD4-Ig due to its C-terminal coreceptor-mimetic peptide. Here we investigated whether the coreceptor-mimetic peptide mim6 improved the potency of bNAbs with different epitopes. We observed that when mim6 was appended to the C terminus of the heavy chains of bNAbs, this sulfopeptide improved the potency of all classes of bNAbs against HIV-1 isolates that are sensitive to neutralization by the sulfopeptide alone. However, mim6 did not significantly enhance neutralization of other isolates when appended to most classes of bNAbs, with one exception. Specifically, mim6 improved the potency of bNAbs of the V3-glycan class, including PGT121, PGT122, PGT128, and 10-1074, by an average of 2-fold for all HIV-1 isolates assayed. Despite this difference, 10-1074 does not induce exposure of the coreceptor-binding site, and addition of mim6 to 10-1074 did not promote shedding of the gp120 subunit of Env. Mixtures of 10-1074 and an Fc domain fused to mim6 neutralized less efficiently than a 10-1074/mim6 fusion, indicating that mim6 enhances the avidity of this fusion. Our data show that mim6 can consistently improve the potency of V3-glycan antibodies and suggest that these antibodies bind in an orientation that facilitates mim6 association with Env.IMPORTANCE HIV-1 requires both the cellular receptor CD4 and a tyrosine-sulfated coreceptor to infect its target cells. CD4-Ig is a fusion of the HIV-1-binding domains of CD4 with an antibody Fc domain. Previous studies have demonstrated that the potency of CD4-Ig is markedly increased by appending a coreceptor-mimetic sulfopeptide to its C terminus. We investigated whether this coreceptor-mimetic peptide improves the potency of broadly neutralizing antibodies (bNAbs) targeting five major epitopes on the HIV-1 envelope glycoprotein (Env). We observed that inclusion of the sulfopeptide dramatically improved the potency of all bNAb classes against isolates with more-open Env structures, typically those that utilize the coreceptor CXCR4. In contrast, the sulfopeptide improved only V3-glycan antibodies when neutralizing primary isolates, on average by 2-fold. These studies improve the potency of one class of bNAbs, show that coreceptor-mimetic sulfopeptides enhance neutralization through distinct mechanisms, and provide insight for the design of novel multispecific entry inhibitors.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Peptidomiméticos/imunologia , Antígenos CD4/imunologia , Linhagem Celular , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Testes de Neutralização
18.
PLoS Pathog ; 14(8): e1007238, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30125330

RESUMO

Many broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus type 1 (HIV-1) were shown effective in animal models, and are currently evaluated in clinical trials. However, use of these antibodies in humans is hampered by the rapid emergence of resistant viruses. Here we show that soft-randomization can be used to accelerate the parallel identification of viral escape pathways. As a proof of principle, we soft-randomized the epitope regions of VRC01-class bNAbs in replication-competent HIV-1 and selected for resistant variants. After only a few passages, a surprisingly diverse population of antibody-resistant viruses emerged, bearing both novel and previously described escape mutations. We observed that the escape variants resistant to some VRC01-class bNAbs are resistant to most other bNAbs in the same class, and that a subset of variants was completely resistant to every well characterized VRC01-class bNAB, including VRC01, NIH45-46, 3BNC117, VRC07, N6, VRC-CH31, and VRC-PG04. Thus, our data demonstrate that soft randomization is a suitable approach for accelerated detection of viral escape, and highlight the challenges inherent in administering or attempting to elicit VRC01-class antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Anti-HIV , HIV-1/imunologia , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Evasão da Resposta Imune/genética , Mutação , Testes de Neutralização , Células Tumorais Cultivadas
19.
Mol Ther ; 27(3): 650-660, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30704961

RESUMO

Adeno-associated virus (AAV) delivery of potent and broadly neutralizing antibodies (bNAbs is a promising approach for the prevention of HIV-1 infection. The immunoglobulin G (IgG)1 subtype is usually selected for this application, because it efficiently mediates antibody effector functions and has a somewhat longer half-life. However, the use of IgG1-Fc has been associated with the generation of anti-drug antibodies (ADAs) that correlate with loss of antibody expression. In contrast, we have shown that expression of the antibody-like molecule eCD4-Ig bearing a rhesus IgG2-Fc domain showed reduced immunogenicity and completely protected rhesus macaques from simian-HIV (SHIV)-AD8 challenges. To directly compare the performance of the IgG1-Fc and the IgG2-Fc domains in a prophylactic setting, we compared AAV1 expression of rhesus IgG1 and IgG2 forms of four anti-HIV bNAbs: 3BNC117, NIH45-46, 10-1074, and PGT121. Interestingly, IgG2-isotyped bNAbs elicited significantly lower ADA than their IgG1 counterparts. We also observed significant protection from two SHIV-AD8 challenges in macaques expressing IgG2-isotyped bNAbs, but not from those expressing IgG1. Our data suggest that monoclonal antibodies isotyped with IgG2-Fc domains are less immunogenic than their IgG1 counterparts, and they highlight ADAs as a key barrier to the use of AAV1-expressed bNAbs.


Assuntos
Anticorpos Neutralizantes/metabolismo , HIV-1/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Dependovirus/genética , HIV-1/genética , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Estimativa de Kaplan-Meier , Macaca mulatta
20.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593050

RESUMO

The human immunodeficiency virus type 1 (HIV-1) entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralized all HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates that it has been tested against, suggesting that it may be useful in clinical settings, where antibody escape is a concern. Here, we characterize three new eCD4-Ig variants, each with a different architecture and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as the original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented the promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications.IMPORTANCE HIV-1 bNAbs have properties different from those of antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral life cycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the utility of antibodies as a treatment for HIV-1 infection or as part of an effort to eradicate latently infected cells. eCD4-Ig is an antibody-like entry inhibitor that closely mimics HIV-1's obligate receptors. eCD4-Ig appears to be qualitatively different from antibodies, since it neutralizes all HIV-1, HIV-2, and SIV isolates. Here, we characterize three new structurally distinct eCD4-Ig variants and show that each excels in a key property useful to prevent, treat, or cure an HIV-1 infection. For example, one variant neutralized HIV-1 most efficiently, while others best enlisted natural killer cells to eliminate infected cells. These observations will help generate eCD4-Ig variants optimized for different clinical applications.


Assuntos
Anticorpos Neutralizantes/imunologia , Imunoadesinas CD4/farmacologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fatores Imunológicos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/genética , Antígenos CD4/imunologia , Imunoadesinas CD4/genética , Linhagem Celular , Cães , Células HEK293 , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA