Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Infect Dis ; 23(1): 764, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932678

RESUMO

BACKGROUND: Crimean Congo hemorrhagic fever (CCHF) is endemic in Southern Mauritania where recurrent outbreaks have been constantly observed since the 1980's. The present study is the first to assess CCHFV antibodies and RNA in humans. METHODS: A retrospective study was conducted using 263 humans and 1380 domestic animals serum samples, and 282 tick specimens of Hyalomma genus collected from 54 settings in 12 provinces across Mauritania. Antibodies targeting CCHF viral nucleoprotein were detected in animal and human sera using double-antigen ELISA. CCHFV specific RNA was detected in human and animal sera as well as tick supernatants using a CCHFV real time RT-PCR kit. Individual characteristics of sampled hosts were collected at the same time and data were geo-referenced. Satellite data of several environmental and climatic factors, were downloaded from publicly available datasets, and combined with data on livestock mobility, animal and human density, road accessibility and individual characteristics to identify possible risk factors for CCHFV spatial distribution. To this end, multivariate logistic models were developed for each host category (human, small and large ruminants). RESULTS: The overall CCHFV antibody prevalence was 11.8% [95% CI: 8.4-16.3] in humans (17.9% in 2020 and 5.4% in 2021; p = 0.0017) and 33.1% (95% CI: 30.1-36.3) in livestock. CCHFV-specific antibodies were detected in 91 (18.1%) out of 502 sheep, 43 (9.0%) out of 477 goats, 144 (90.5%) out of 161 dromedaries and 179 (74.6%) out of 240 cattle. CCHFV RNA was detected in only 2 (0.7%) sera out of 263 animals herders samples from Hodh El Gharbi province and in 32 (11.3%) out of 282 Hyalomma ticks. In humans as well as in animals, seropositivity was not associated with sex or age groups. The multivariate analysis determined the role of different environmental, climatic and anthropic factors in the spatial distribution of the disease with animal mobility and age being identified as risk factors. CONCLUSION: Results of the present study demonstrate the potential risk of CCHF for human population in Mauritania primarily those living in rural areas in close vicinity with animals. Future studies should prioritize an integrative human and veterinary approach for better understanding and managing Crimean-Congo hemorrhagic fever.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Saúde Única , Carrapatos , Humanos , Animais , Bovinos , Ovinos , Febre Hemorrágica da Crimeia/epidemiologia , Gado , Estudos Retrospectivos , Mauritânia , Cabras , Anticorpos Antivirais , RNA , Fatores de Risco , Estudos Soroepidemiológicos
2.
J Infect Dis ; 225(10): 1852-1855, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34791300

RESUMO

Numerous studies have demonstrated the importance of the adaptive immunity for survival following Ebola virus (EBOV) infection. To evaluate the contribution of tissue damage to EBOV-induced immune suppression, acute liver damage or hemolysis, 2 symptoms associated with lethal EBOV infection, were chemically induced in vaccinated mice. Results show that either liver damage or hemolysis was sufficient to inhibit the host humoral response against EBOV glycoprotein and to drastically reduce the level of circulating T cells. This study thus provides a possible mechanism for the limited specific antibody production and lymphopenia in individuals with lethal hemorrhagic fever infections.


Assuntos
Formação de Anticorpos , Doença pelo Vírus Ebola , Linfopenia , Animais , Anticorpos Antivirais , Ebolavirus , Glicoproteínas , Hemólise , Doença pelo Vírus Ebola/imunologia , Fígado/patologia , Fígado/virologia , Linfopenia/virologia , Camundongos
3.
J Infect Dis ; 226(4): 616-624, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626109

RESUMO

Many characteristics associated with Ebola virus disease remain to be fully understood. It is known that direct contact with infected bodily fluids is an associated risk factor, but few studies have investigated parameters associated with transmission between individuals, such as the dose of virus required to facilitate spread and route of infection. Therefore, we sought to characterize the impact by route of infection, viremia, and viral shedding through various mucosae, with regards to intraspecies transmission of Ebola virus in a nonhuman primate model. Here, challenge via the esophagus or aerosol to the face did not result in clinical disease, although seroconversion of both challenged and contact animals was observed in the latter. Subsequent intramuscular or intratracheal challenges suggest that viral loads determine transmission likelihood to naive animals in an intramuscular-challenge model, which is greatly facilitated in an intratracheal-challenge model where transmission from challenged to direct contact animal was observed consistently.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Macaca mulatta , Carga Viral , Viremia
4.
J Infect Dis ; 221(5): 701-706, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30942884

RESUMO

BACKGROUND: In 2017, the Democratic Republic of the Congo (DRC) recorded its eighth Ebola virus disease (EVD) outbreak, approximately 3 years after the previous outbreak. METHODS: Suspect cases of EVD were identified on the basis of clinical and epidemiological information. Reverse transcription-polymerase chain reaction (RT-PCR) analysis or serological testing was used to confirm Ebola virus infection in suspected cases. The causative virus was later sequenced from a RT-PCR-positive individual and assessed using phylogenetic analysis. RESULTS: Three probable and 5 laboratory-confirmed cases of EVD were recorded between 27 March and 1 July 2017 in the DRC. Fifty percent of cases died from the infection. EVD cases were detected in 4 separate areas, resulting in > 270 contacts monitored. The complete genome of the causative agent, a variant from the Zaireebolavirus species, denoted Ebola virus Muyembe, was obtained using next-generation sequencing. This variant is genetically closest, with 98.73% homology, to the Ebola virus Mayinga variant isolated from the first DRC outbreaks in 1976-1977. CONCLUSION: A single spillover event into the human population is responsible for this DRC outbreak. Human-to-human transmission resulted in limited dissemination of the causative agent, a novel Ebola virus variant closely related to the initial Mayinga variant isolated in 1976-1977 in the DRC.


Assuntos
Surtos de Doenças , Ebolavirus/genética , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Adolescente , Adulto , República Democrática do Congo/epidemiologia , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testes Sorológicos , Adulto Jovem
5.
Nature ; 514(7520): 47-53, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25171469

RESUMO

Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viraemia and abnormalities in blood count and blood chemistry were evident in many animals before ZMapp intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal haemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp is cross-reactive with the Guinean variant of Ebola. ZMapp exceeds the efficacy of any other therapeutics described so far, and results warrant further development of this cocktail for clinical use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Imunização Passiva , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Guiné , Cobaias , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
6.
J Infect Dis ; 218(suppl_5): S292-S296, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30325435

RESUMO

Detection of chains of transmission is critical to interrupt Ebola virus (EBOV) outbreaks. For >25 years, quantitative reverse transcription polymerase chain reaction performed on biological fluids has been the reference standard for EBOV detection and identification. In the current study, we investigated the use of environmental sampling to detect EBOV shed from probable case patients buried without the collection of bodily fluids. During the 2012 Bundibugyo virus (BDBV) outbreak in the Democratic Republic of the Congo, environmental samples were screened for BDBV RNA by means of real-time polymerase chain reaction. Low levels of BDBV genomic RNA were detected in a hospital and in a house. Detection of BDBV RNA in the house led to the identification of the last chain of transmission still active, which resulted in the safe burial of the person with the last laboratory-confirmed case of this outbreak. Overall, environmental sampling can fill specific gaps to help confirm EBOV positivity and therefore be of value in outbreak management.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Líquidos Corporais/virologia , República Democrática do Congo , Surtos de Doenças , Humanos , RNA Viral/genética
7.
J Infect Dis ; 214(suppl 3): S281-S289, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27651412

RESUMO

Enhanced virulence and/or transmission of West African Ebola virus (EBOV) variants, which are divergent from their Central African counterparts, are suspected to have contributed to the sizable toll of the recent Ebola virus disease (EVD) outbreak. This study evaluated the pathogenicity and shedding in rhesus macaques infected with 1 of 2 West African isolates (EBOV-C05 or EBOV-C07) or a Central African isolate (EBOV-K). All animals infected with EBOV-C05 or EBOV-C07 died of EVD, whereas 2 of 3 EBOV-K-infected animals died. The viremia level was elevated 10-fold in EBOV-C05-infected animals, compared with EBOV-C07- or EBOV-K-infected animals. More-severe lung pathology was observed in 2 of 6 EBOV-C05/C07-infected macaques. This is the first detailed analysis of the recently circulating EBOV-C05/C07 in direct comparison to EBOV-K with 6 animals per group, and it showed that EBOV-C05 but not EBOV-C07 can replicate at higher levels and cause more tissue damage in some animals. Increased virus shedding from individuals who are especially susceptible to EBOV replication is possibly one of the many challenges facing the community of healthcare and policy-making responders since the beginning of the outbreak.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Animais , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/patologia , Humanos , Macaca mulatta , Especificidade da Espécie , Viremia , Virulência , Eliminação de Partículas Virais
9.
J Infect Dis ; 212 Suppl 2: S389-97, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26038398

RESUMO

In nonhuman primates, complete protection against an Ebola virus (EBOV) challenge has previously been achieved after a single injection with several vaccine platforms. However, long-term protection against EBOV after a single immunization has not been demonstrated to this date. Interestingly, prime-boost regimens have demonstrated longer protection against EBOV challenge, compared with single immunizations. Since prime-boost regimens have the potential to achieve long-term protection, determining optimal vector combinations is crucial. However, testing prime-boost efficiency in long-term protection studies is time consuming and resource demanding. Here, we investigated the optimal prime-boost combination, using DNA, porcine-derived adeno-associated virus serotype 6 (AAV-po6), and human adenovirus serotype 5 (Ad5) vector, in a short-term protection study in the mouse model of EBOV infection. In addition, we also investigated which immune parameters were indicative of a strong boost. Each vaccine platform was titrated in mice to identify which dose (single immunization) induced approximately 20% protection after challenge with a mouse-adapted EBOV. These doses were then used to determine the protection efficacy of various prime-boost combinations, using the same mouse model. In addition, humoral and cellular immune responses against EBOV glycoprotein were analyzed by an enzyme-linked immunosorbent assay, a neutralizing antibody assay, and an interferon γ-specific enzyme-linked immunospot assay. When DNA was used as a prime, Ad5 boost induced the best protection, which correlated with a higher cellular response. In contrast, when AAV-po6 or Ad5 were injected first, better protection was achieved after DNA boost, and this correlated with a higher total glycoprotein-specific immunoglobulin G titer. Prime-boost regimens using independent vaccine platforms may provide a useful strategy to induce long-term immune protection against filoviruses.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Adenovírus Humanos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dependovirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , ELISPOT/métodos , Vetores Genéticos/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunização Secundária/métodos , Imunoglobulina G/imunologia , Camundongos , Suínos , Vacinação/métodos , Proteínas Virais/imunologia
10.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38400125

RESUMO

This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.

11.
Antiviral Res ; 226: 105873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580170

RESUMO

In the 1990s, monoclonal antibodies (mAbs) progressed from scientific tools to advanced therapeutics, particularly for the treatment of cancers and autoimmune and inflammatory disorders. In the arena of infectious disease, the inauguration of mAbs as a post-exposure treatment in humans against Ebola virus (EBOV) occurred in response to the 2013-2016 West Africa outbreak. This review recounts the history of a candidate mAb treatment, ZMapp, beginning with its emergency use in the 2013-2016 outbreak and advancing to randomized controlled trials into the 2018-2020 African outbreak. We end with a brief discussion of the hurdles and promise toward mAb therapeutic use against infectious disease.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Ebolavirus/imunologia , Ebolavirus/efeitos dos fármacos , Anticorpos Antivirais/uso terapêutico , Anticorpos Antivirais/imunologia , Animais , Surtos de Doenças , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/imunologia , África Ocidental/epidemiologia
12.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675751

RESUMO

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

13.
Emerg Microbes Infect ; 12(1): e2169198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36655944

RESUMO

During a pandemic, effective vaccines are typically in short supply, particularly at onset intervals when the wave is accelerating. We conducted an observational, retrospective analysis of aggregated data from all patients who tested positive for SARS-CoV-2 during the waves caused by the Delta and Omicron variants, stratified based on their known previous infection and vaccination status, throughout the University of Texas Medical Branch (UTMB) network. Next, the immunity statuses within each medical parameter were compared to naïve individuals for the effective decrease of occurrence. Lastly, we conducted studies using mice and pre-pandemic human samples for IgG responses to viral nucleocapsid compared to spike protein toward showing a functional component supportive of the medical data results in relation to the immunity types. During the Delta and Omicron waves, both infection-induced and hybrid immunities were associated with a trend of equal or greater decrease of occurrence than vaccine-induced immunity in hospitalizations, intensive care unit admissions, and deaths in comparison to those without pre-existing immunity, with hybrid immunity often trending with the greatest decrease. Compared to individuals without pre-existing immunity, those vaccinated against SARS-CoV-2 had a significantly reduced incidence of COVID-19, as well as all subsequent medical parameters. Though vaccination best reduces health risks associated with initial infection toward acquiring immunity, our findings suggest infection-induced immunity is as or more effective than vaccination in reducing the severity of reinfection from the Delta or Omicron variants, which should inform public health response at pandemic onset, particularly when triaging towards the allotment of in-demand vaccinations.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Reinfecção , SARS-CoV-2 , Estudos Retrospectivos , Hospitalização
14.
Vaccines (Basel) ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36992174

RESUMO

BACKGROUND: The Hepatitis B virus (HBV) vaccine is used worldwide as an efficient tool to prevent the occurrence of chronic HBV infection and the subsequent liver disease. However, despite decades of vaccination campaigns, millions of new infections are still reported every year. Here, we aimed to assess the nationwide HBV vaccination coverage in Mauritania as well as the presence of protective levels of the antibodies against HBV surface antigen (HBsAb) following vaccination in a sample of children immunized as infants. METHODS: To evaluate the frequency of fully vaccinated and seroprotected children in Mauritania, a prospective serological study was conducted in the capital. First, we evaluated the pediatric HBV vaccine coverage in Mauritania between 2015 and 2020. Then, we examined the level of antibodies against HBV surface antigen (HBsAb) in 185 fully vaccinated children (aged 9 months to 12 years) by ELISA using the VIDAS hepatitis panel for Minividas (Biomerieux). These vaccinated children were sampled in 2014 or 2021. RESULTS: In Mauritania, between 2016 and 2019, more than 85% of children received the complete HBV vaccine regimen. While 93% of immunized children between 0 and 23 months displayed HBsAb titer >10 IU/L, the frequency of children with similar titers decreased to 63, 58 and 29% in children aged between 24-47, 48-59 and 60-144 months, respectively. CONCLUSIONS: A marked reduction in the frequency of HBsAb titer was observed with time, indicating that HBsAb titer usefulness as marker of protection is short lived and prompting the need for more accurate biomarkers predictive of long-term protection.

15.
Trop Med Infect Dis ; 8(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36828503

RESUMO

The mosquito-borne disease caused by the Rift Valley Fever Virus (RVFV) is a viral hemorrhagic fever that affects humans and animals. In 1987, RVFV emerged in Mauritania, which caused the first RVFV outbreak in West Africa. This outbreak was shortly followed by reported cases in humans and livestock in Senegal. Animal trade practices with neighboring Mauritania suggest northern regions of Senegal are at high risk for RVF. In this study, we aim to conduct a molecular and serological survey of RVFV in humans and livestock in Agnam (northeastern Senegal) by RT-PCR (reverse transcription real-time polymerase chain reaction) and ELISA (Enzyme-Linked Immunosorbent Assay), respectively. Of the two hundred fifty-five human sera, one (0.39%) tested RVFV IgM positive, while fifty-three (20.78%) tested positive for RVFV IgG. For animal monitoring, out of 30 sheep recorded and sampled over the study period, 20 (66.67%) showed seroconversion to RVFV IgG antibodies, notably during the rainy season. The presence of antibodies increased significantly with age in both groups (p < 0.05), as the force of RVF infection (FOI), increased by 16.05% per year for humans and by 80.4% per month for livestock sheep. This study supports the usefulness of setting up a One Health survey for RVF management.

16.
Emerg Microbes Infect ; 12(2): 2251595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649434

RESUMO

Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.


Assuntos
Infecções por HIV , Vacinas , Animais , Macaca mulatta , Vesiculovirus , Regulação para Cima , Antígenos Virais , Complicações Pós-Operatórias , Infecções por HIV/prevenção & controle
17.
PLoS Pathog ; 6: e1000975, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617170

RESUMO

CD4(+) T cell loss is central to HIV pathogenesis. In the initial weeks post-infection, the great majority of dying cells are uninfected CD4(+) T cells. We previously showed that the 3S motif of HIV-1 gp41 induces surface expression of NKp44L, a cellular ligand for an activating NK receptor, on uninfected bystander CD4(+) T cells, rendering them susceptible to autologous NK killing. However, the mechanism of the 3S mediated NKp44L surface expression on CD4(+) T cells remains unknown. Here, using immunoprecipitation, ELISA and blocking antibodies, we demonstrate that the 3S motif of HIV-1 gp41 binds to gC1qR on CD4(+) T cells. We also show that the 3S peptide and two endogenous gC1qR ligands, C1q and HK, each trigger the translocation of pre-existing NKp44L molecules through a signaling cascade that involves sequential activation of PI3K, NADPH oxidase and p190 RhoGAP, and TC10 inactivation. The involvement of PI3K and NADPH oxidase derives from 2D PAGE experiments and the use of PIP3 and H2O2 as well as small molecule inhibitors to respectively induce and inhibit NKp44L surface expression. Using plasmid encoding wild type or mutated form of p190 RhoGAP, we show that 3S mediated NKp44L surface expression on CD4(+) T cells is dependent on p190 RhoGAP. Finally, the role of TC10 in NKp44L surface induction was demonstrated by measuring Rho protein activity following 3S stimulation and using RNA interference. Thus, our results identify gC1qR as a new receptor of HIV-gp41 and demonstrate the signaling cascade it triggers. These findings identify potential mechanisms that new therapeutic strategies could use to prevent the CD4(+) T cell depletion during HIV infection and provide further evidence of a detrimental role played by NK cells in CD4(+) T cell depletion during HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Peróxido de Hidrogênio/metabolismo , Receptor 2 Desencadeador da Citotoxicidade Natural/biossíntese , Fosfatidilinositol 3-Quinases/fisiologia , Motivos de Aminoácidos/fisiologia , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , NADPH Oxidases/metabolismo , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais
18.
Curr Opin Virol ; 54: 101210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35287095

RESUMO

Ebola virus (EBOV) outbreaks can claim thousands of lives, cripple healthcare systems and local economies. Effective vaccines and treatments against EBOV are therefore needed to limit the impact of this deadly disease. In 2019, a hallmark clinical trial demonstrated the efficacy of monoclonal antibody (mAb) against EBOV. Despite, this recent success, survival of individuals with high viremia remains low. Effective immunotherapies against other Ebolavirus species are still under pre-clinical development. More importantly, the cost of immunotherapies is prohibitive to most individual and affected countries. Novel manufacturing and administration strategies of mAb protein or genetic information could substantially reduce the cost of immunotherapies; hence making them valuable tools against EBOV and other infectious agents.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Surtos de Doenças , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Humanos
19.
Biomedicines ; 10(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36289776

RESUMO

Human metapneumovirus (HMPV) and human respiratory virus (HRSV) are two leading causes of acute respiratory tract infection in young children. While there is no licensed drug against HMPV, the monoclonal antibody (mAb) Palivizumab is approved against HRSV for prophylaxis use only. Novel therapeutics against both viruses are therefore needed. Here, we describe the identification of human mAbs targeting these viruses by using flow cytometry-based cell sorting. One hundred and two antibodies were initially identified from flow cytometry-based cell sorting as binding to the fusion protein from HRSV, HMPV or both. Of those, 95 were successfully produced in plants, purified and characterized for binding activity by ELISA and neutralization assays as well as by inhibition of virus replication in mice. Twenty-two highly reactive mAbs targeting either HRSV or HMPV were isolated. Of these, three mAbs inhibited replication in vivo of a single virus while one mAb could reduce both HRSV and HMPV titers in the lung. Overall, this study identifies several human mAbs with virus-specific therapeutic potential and a unique mAb with inhibitory activities against both HRSV and HMPV.

20.
J Virol Methods ; 308: 114586, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850366

RESUMO

Serology-based diagnosis remains one of the major tools for diagnosis and surveillance of infectious diseases. However, for many neglected diseases no or only few commercial assays are available and often with prices prohibiting large scale testing in low and middle-income countries (LMICs). We developed an adaptable enzyme-linked immunoassay (ELISA) using hepatitis C virus (HCV) as a proof-of-concept application. By combining the maltose-binding-protein with a multiepitope HCV protein, we were able to obtain a high concentration of protein suitable for downstream applications. Following optimization, the assay was verified using previously tested human samples from Canada, Denmark and Gabon in parallel with the use of a commercial protein. Sensitivity and specificity were calculated to 98 % and 97 % respectively, after accounting for non-specific binding and assay optimization. This study provides a thorough description of the development, and validation of a multiepitope ELISA-based diagnostic assay against HCV, which could be implemented at low cost. The described methodology can be readily adapted to develop novel ELISA-based diagnostic assays for other infectious pathogens with well-described immunogenic epitopes. This method could improve the diagnosis of neglected diseases for which affordable diagnostic assays are lacking.


Assuntos
Hepacivirus , Hepatite C , Ensaio de Imunoadsorção Enzimática/métodos , Hepatite C/diagnóstico , Anticorpos Anti-Hepatite C , Antígenos da Hepatite C , Humanos , Doenças Negligenciadas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA