Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(26): E6039-E6047, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891714

RESUMO

Leptin expression decreases after fat loss and is increased when obesity develops, and its proper quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer 1 (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a bacterial artificial chromosome transgenic (BACTG) reporter mouse. However, this and the other elements that we identified do not account for the quantitative changes in leptin expression that accompany alterations of adipose mass. In this report, we used an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify a 17-bp noncanonical peroxisome proliferator-activated receptor gamma (PPARγ)/retinoid X receptor alpha (RXRα)-binding site, leptin regulatory element 1 (LepRE1), within LE1, and show that it is necessary for the fat-regulated quantitative control of reporter (luciferase) expression. While BACTG reporter mice with mutations in this sequence still show fat-specific expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity in ob/ob mice is impaired. A functionally analogous LepRE1 site is also found in a second, redundant DNA regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring qualitative and quantitative expression of the leptin gene and further suggest that factor(s) that bind to LepRE1 quantitatively control leptin expression and might be components of a lipid-sensing system in adipocytes.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Leptina , PPAR gama , Elementos de Resposta , Receptor X Retinoide alfa , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Linhagem Celular , Leptina/biossíntese , Leptina/genética , Camundongos , Camundongos Obesos
2.
Elife ; 92020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452759

RESUMO

Adipogenesis in adulthood replaces fat cells that turn over and can contribute to the development of obesity. However, the proliferative potential of adipocyte progenitors in vivo is unknown (Faust et al., 1976; Faust et al., 1977; Hirsch and Han, 1969; Johnson and Hirsch, 1972). We addressed this by injecting labeled wild-type embryonic stem cells into blastocysts derived from lipodystrophic A-ZIP transgenic mice, which have a genetic block in adipogenesis. In the resulting chimeric animals, wild-type ES cells are the only source of mature adipocytes. We found that when chimeric animals were fed a high-fat-diet, animals with low levels of chimerism showed a significantly lower adipose tissue mass than animals with high levels of chimerism. The difference in adipose tissue mass was attributed to variability in the amount of subcutaneous adipose tissue as the amount of visceral fat was independent of the level of chimerism. Our findings thus suggest that proliferative potential of adipocyte precursors is limited and can restrain the development of obesity.


Assuntos
Adipócitos/citologia , Adipogenia , Tecido Adiposo/embriologia , Células-Tronco Embrionárias/fisiologia , Animais , Quimerismo , Dieta Hiperlipídica , Teste de Complementação Genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Nat Med ; 25(3): 507-516, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842678

RESUMO

Quantitative changes in leptin concentration lead to alterations in food intake and body weight, but the regulatory mechanisms that control leptin gene expression are poorly understood. Here we report that fat-specific and quantitative leptin expression is controlled by redundant cis elements and trans factors interacting with the proximal promoter together with a long noncoding RNA (lncOb). Diet-induced obese mice lacking lncOb show increased fat mass with reduced plasma leptin levels and lose weight after leptin treatment, whereas control mice do not. Consistent with this finding, large-scale genetic studies of humans reveal a significant association of single-nucleotide polymorphisms (SNPs) in the region of human lncOb with lower plasma leptin levels and obesity. These results show that reduced leptin gene expression can lead to a hypoleptinemic, leptin-responsive form of obesity and provide a framework for elucidating the pathogenic mechanism in the subset of obese patients with low endogenous leptin levels.


Assuntos
Leptina/genética , Obesidade/genética , RNA Longo não Codificante/genética , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica , Humanos , Leptina/metabolismo , Leptina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único
4.
Mol Metab ; 4(8): 592, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26266092

RESUMO

[This corrects the article DOI: 10.1016/j.molmet.2015.02.002.].

5.
Mol Metab ; 4(5): 392-405, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973387

RESUMO

OBJECTIVE: Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. METHODS: Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. RESULTS: Using Leptin-BAC luciferase mice, we showed that DNA sequences between -22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820-2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the -22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. CONCLUSIONS: These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA