Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 20(4): 5638-66, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25838169

RESUMO

This review summarizes the importance of nanoporous materials and their fascinating structural properties with respect to the catalytic and photocatalytic reduction of CO2 to methane, toward achieving a sustainable energy supply. The importance of catalysis as a bridge step for advanced energy systems and the associated environmental issues are stressed. A deep understanding of the fundamentals of these nanoporous solids is necessary to improve the design and efficiency of CO2 methanation. The role of the support dominates the design in terms of developing an efficient methanation catalyst, specifically with respect to ensuring enhanced metal dispersion and a long catalyst lifetime. Nanoporous materials provide the best supports for Ni, Ru, Rh, Co, Fe particles because they can prevent sintering and deactivation through coking, which otherwise blocks the metal surface as carbon accumulates. This review concludes with the major challenges facing the CO2 methanation by nanoporous materials for fuel applications.


Assuntos
Biocombustíveis , Dióxido de Carbono/química , Metano/química , Nanoporos/ultraestrutura , Dióxido de Carbono/metabolismo , Catálise , Metano/metabolismo
2.
RSC Adv ; 10(63): 38233-38243, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517541

RESUMO

Mesoporous TiO2 films with enhanced photocatalytic activity in both UV and visible wavelength ranges were developed through a non-conventional atomic layer deposition (ALD) process at room temperature. Deposition at such a low temperature promotes the accumulation of by-products in the amorphous TiO2 films, caused by the incomplete hydrolysis of the TiCl4 precursor. The additional thermal annealing induces the fast recrystallisation of amorphous films, as well as an in situ acidic treatment of TiO2. The interplay between the deposition parameters, such as purge time, the amount of structural defects introduced and the enhancement of the photocatalytic properties from different mesoporous films clearly shows that our easily upscalable non-conventional ALD process is of great industrial interest for environmental remediation and other photocatalytic applications, such as hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA