Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
AJR Am J Roentgenol ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356481

RESUMO

Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.

2.
Eur Radiol ; 33(1): 461-471, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35771247

RESUMO

OBJECTIVES: The Prostate Imaging Quality (PI-QUAL) score is a new metric to evaluate the diagnostic quality of multiparametric magnetic resonance imaging (MRI) of the prostate. This study assesses the impact of an intervention, namely a prostate MRI quality training lecture, on the participant's ability to apply PI-QUAL. METHODS: Sixteen participants (radiologists, urologists, physicists, and computer scientists) of varying experience in reviewing diagnostic prostate MRI all assessed the image quality of ten examinations from different vendors and machines. Then, they attended a dedicated lecture followed by a hands-on workshop on MRI quality assessment using the PI-QUAL score. Five scans assessed by the participants were evaluated in the workshop using the PI-QUAL score for teaching purposes. After the course, the same participants evaluated the image quality of a new set of ten scans applying the PI-QUAL score. Results were assessed using receiver operating characteristic analysis. The reference standard was the PI-QUAL score assessed by one of the developers of PI-QUAL. RESULTS: There was a significant improvement in average area under the curve for the evaluation of image quality from baseline (0.59 [95 % confidence intervals: 0.50-0.66]) to post-teaching (0.96 [0.92-0.98]), an improvement of 0.37 [0.21-0.41] (p < 0.001). CONCLUSIONS: A teaching course (dedicated lecture + hands-on workshop) on PI-QUAL significantly improved the application of this scoring system to assess the quality of prostate MRI examinations. KEY POINTS: • A significant improvement in the application of PI-QUAL for the assessment of prostate MR image quality was observed after an educational intervention. • Appropriate training on image quality can be delivered to those involved in the acquisition and interpretation of prostate MRI. • Further investigation will be needed to understand the impact on improving the acquisition of high-quality diagnostic prostate MR examinations.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/patologia , Bolsas de Estudo , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
3.
J Digit Imaging ; 35(6): 1719-1737, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995898

RESUMO

Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .


Assuntos
Sistemas de Informação em Radiologia , Radiologia , Humanos , Ecossistema , Curadoria de Dados , Tomografia Computadorizada por Raios X , Aprendizado de Máquina
4.
Radiology ; 295(2): 328-338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32154773

RESUMO

Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.


Assuntos
Biomarcadores/análise , Processamento de Imagem Assistida por Computador/normas , Software , Calibragem , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Fenótipo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sarcoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X
5.
Magn Reson Med ; 79(4): 2346-2358, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28718517

RESUMO

PURPOSE: To compare the fitting and tissue discrimination performance of biexponential, kurtosis, stretched exponential, and gamma distribution models for high b-factor diffusion-weighted images in prostate cancer. METHODS: Diffusion-weighted images with 15 b-factors ranging from b = 0 to 3500 s/mm2 were obtained in 62 prostate cancer patients. Pixel-wise signal decay fits for each model were evaluated with the Akaike Information Criterion (AIC). Parameter values for each model were determined within normal prostate and the index lesion. Their potential to differentiate normal from cancerous tissue was investigated through receiver operating characteristic analysis and comparison with Gleason score. RESULTS: The biexponential slow diffusion fraction fslow , the apparent kurtosis diffusion coefficient ADCK , and the excess kurtosis factor K differ significantly among normal peripheral zone (PZ), normal transition zone (TZ), tumor PZ, and tumor TZ. Biexponential and gamma distribution models result in the lowest AIC, indicating a superior fit. Maximum areas under the curve (AUCs) of all models ranged from 0.93 to 0.96 for the PZ and from 0.95 to 0.97 for the TZ. Similar AUCs also result from the apparent diffusion coefficient (ADC) of a monoexponential fit to a b-factor sub-range up to 1250 s/mm2 . For kurtosis and stretched exponential models, single parameters yield the highest AUCs, whereas for the biexponential and gamma distribution models, linear combinations of parameters produce the highest AUCs. Parameters with high AUC show a trend in differentiating low from high Gleason score, whereas parameters with low AUC show no such ability. CONCLUSION: All models, including a monoexponential fit to a lower-b sub-range, achieve similar AUCs for discrimination of normal and cancer tissue. The biexponential model, which is favored statistically, also appears to provide insight into disease-related microstructural changes. Magn Reson Med 79:2346-2358, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Área Sob a Curva , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Distribuição Normal , Imagens de Fantasmas , Probabilidade , Curva ROC
6.
Radiology ; 274(1): 170-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25222067

RESUMO

PURPOSE: To determine the detection rate, clinical relevance, Gleason grade, and location of prostate cancer ( PCa prostate cancer ) diagnosed with and the safety of an in-bore transperineal 3-T magnetic resonance (MR) imaging-guided prostate biopsy in a clinically heterogeneous patient population. MATERIALS AND METHODS: This prospective retrospectively analyzed study was HIPAA compliant and institutional review board approved, and informed consent was obtained. Eighty-seven men (mean age, 66.2 years ± 6.9) underwent multiparametric endorectal prostate MR imaging at 3 T and transperineal MR imaging-guided biopsy. Three subgroups of patients with at least one lesion suspicious for cancer were included: men with no prior PCa prostate cancer diagnosis, men with PCa prostate cancer who were undergoing active surveillance, and men with treated PCa prostate cancer and suspected recurrence. Exclusion criteria were prior prostatectomy and/or contraindication to 3-T MR imaging. The transperineal MR imaging-guided biopsy was performed in a 70-cm wide-bore 3-T device. Overall patient biopsy outcomes, cancer detection rates, Gleason grade, and location for each subgroup were evaluated and statistically compared by using χ(2) and one-way analysis of variance followed by Tukey honestly significant difference post hoc comparisons. RESULTS: Ninety biopsy procedures were performed with no serious adverse events, with a mean of 3.7 targets sampled per gland. Cancer was detected in 51 (56.7%) men: 48.1% (25 of 52) with no prior PCa prostate cancer , 61.5% (eight of 13) under active surveillance, and 72.0% (18 of 25) in whom recurrence was suspected. Gleason pattern 4 or higher was diagnosed in 78.1% (25 of 32) in the no prior PCa prostate cancer and active surveillance groups. Gleason scores were not assigned in the suspected recurrence group. MR targets located in the anterior prostate had the highest cancer yield (40 of 64, 62.5%) compared with those for the other parts of the prostate (P < .001). CONCLUSION: In-bore 3-T transperineal MR imaging-guided biopsy, with a mean of 3.7 targets per gland, allowed detection of many clinically relevant cancers, many of which were located anteriorly.


Assuntos
Biópsia Guiada por Imagem , Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias da Próstata/patologia , Idoso , Meios de Contraste , Gadolínio DTPA , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Períneo , Estudos Prospectivos
7.
J Magn Reson Imaging ; 42(1): 63-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25263213

RESUMO

PURPOSE: To demonstrate the utility of a robotic needle-guidance template device as compared to a manual template for in-bore 3T transperineal magnetic resonance imaging (MRI)-guided prostate biopsy. MATERIALS AND METHODS: This two-arm mixed retrospective-prospective study included 99 cases of targeted transperineal prostate biopsies. The biopsy needles were aimed at suspicious foci noted on multiparametric 3T MRI using manual template (historical control) as compared with a robotic template. The following data were obtained: the accuracy of average and closest needle placement to the focus, histologic yield, percentage of cancer volume in positive core samples, complication rate, and time to complete the procedure. RESULTS: In all, 56 cases were performed using the manual template and 43 cases were performed using the robotic template. The mean accuracy of the best needle placement attempt was higher in the robotic group (2.39 mm) than the manual group (3.71 mm, P < 0.027). The mean core procedure time was shorter in the robotic (90.82 min) than the manual group (100.63 min, P < 0.030). Percentage of cancer volume in positive core samples was higher in the robotic group (P < 0.001). Cancer yields and complication rates were not statistically different between the two subgroups (P = 0.557 and P = 0.172, respectively). CONCLUSION: The robotic needle-guidance template helps accurate placement of biopsy needles in MRI-guided core biopsy of prostate cancer.


Assuntos
Marcadores Fiduciais , Biópsia Guiada por Imagem/instrumentação , Imagem por Ressonância Magnética Intervencionista/instrumentação , Neoplasias da Próstata/patologia , Robótica/instrumentação , Idoso , Idoso de 80 Anos ou mais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Biópsia Guiada por Imagem/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Pessoa de Meia-Idade , Períneo/patologia , Reprodutibilidade dos Testes , Robótica/métodos , Sensibilidade e Especificidade
8.
J Magn Reson Imaging ; 37(5): 1035-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23606141

RESUMO

Magnetic resonance (MR) examinations of men with prostate cancer are most commonly performed for detecting, characterizing, and staging the extent of disease to best determine diagnostic or treatment strategies, which range from biopsy guidance to active surveillance to radical prostatectomy. Given both the exam's importance to individual treatment plans and the time constraints present for its operation at most institutions, it is essential to perform the study effectively and efficiently. This article reviews the most commonly employed modern techniques for prostate cancer MR examinations, exploring the relevant signal characteristics from the different methods discussed and relating them to intrinsic prostate tissue properties. Also, a review of recent articles using these methods to enhance clinical interpretation and assess clinical performance is provided. J. Magn. Reson. Imaging 2013;37:1035-1054. © 2013 Wiley Periodicals, Inc.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Próstata/patologia , Neoplasias da Próstata/patologia , Previsões , Humanos , Masculino
9.
Tomography ; 9(3): 995-1009, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37218941

RESUMO

Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute's (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard.


Assuntos
Metadados , Neoplasias , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Padrões de Referência
10.
J Magn Reson Imaging ; 36(4): 987-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22645031

RESUMO

PURPOSE: To develop and evaluate image registration methodology for automated re-identification of tumor-suspicious foci from preprocedural MR exams during MR-guided transperineal prostate core biopsy. MATERIALS AND METHODS: A hierarchical approach for automated registration between planning and intra-procedural T2-weighted prostate MRI was developed and evaluated on the images acquired during 10 consecutive MR-guided biopsies. Registration accuracy was quantified at image-based landmarks and by evaluating spatial overlap for the manually segmented prostate and sub-structures. Registration reliability was evaluated by simulating initial mis-registration and analyzing the convergence behavior. Registration precision was characterized at the planned biopsy targets. RESULTS: The total computation time was compatible with a clinical setting, being at most 2 min. Deformable registration led to a significant improvement in spatial overlap of the prostate and peripheral zone contours compared with both rigid and affine registration. Average in-slice landmark registration error was 1.3 ± 0.5 mm. Experiments simulating initial mis-registration resulted in an estimated average capture range of 6 mm and an average in-slice registration precision of ±0.3 mm. CONCLUSION: Our registration approach requires minimum user interaction and is compatible with the time constraints of our interventional clinical workflow. The initial evaluation shows acceptable accuracy, reliability and consistency of the method.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Biópsia Guiada por Imagem/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias da Próstata/patologia , Técnica de Subtração , Adulto , Idoso , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Períneo/cirurgia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Med Phys ; 39(11): 6858-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23127078

RESUMO

PURPOSE: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measure of the associated registration uncertainty. METHODS: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. RESULTS: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was ≤3 mm (95th percentiles within ±4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from -0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of ≤5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. CONCLUSIONS: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance.


Assuntos
Braquiterapia/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Incerteza , Teorema de Bayes , Humanos , Período Intraoperatório , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Medicina de Precisão , Próstata/patologia , Próstata/efeitos da radiação , Próstata/cirurgia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
12.
Acad Radiol ; 27(10): 1432-1439, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31862185

RESUMO

RATIONALE AND OBJECTIVES: To explore a role for multiparametric MRI (mpMRI) as a biomarker of response to neoadjuvant androgen deprivation therapy (ADT) for prostate cancer (PCa). MATERIALS AND METHODS: This prospective study was approved by the institutional review board and was HIPAA compliant. Eight patients with localized PCa had a baseline mpMRI, repeated after 6-months of ADT, followed by prostatectomy. mpMRI indices were extracted from tumor and normal regions of interest (TROI/NROI). Residual cancer burden (RCB) was measured on mpMRI and on the prostatectomy specimen. Paired t-tests compared TROI/NROI mpMRI indices and pre/post-treatment TROI mpMRI indices. Spearman's rank tested for correlations between MRI/pathology-based RCB, and between pathological RCB and mpMRI indices. RESULTS: At baseline, TROI apparent diffusion coefficient (ADC) was lower and dynamic contrast enhanced (DCE) metrics were higher, compared to NROI (ADC: 806 ± 137 × 10-6 vs. 1277 ± 213 × 10-6 mm2/sec, p = 0.0005; Ktrans: 0.346 ± 0.16 vs. 0.144 ± 0.06 min-1, p = 0.002; AUC90: 0.213 ± 0.08 vs. 0.11 ± 0.03, p = 0.002). Post-treatment, there was no change in TROI ADC, but a decrease in TROI Ktrans (0.346 ± 0.16 to 0.188 ± 0.08 min-1; p = 0.02) and AUC90 (0.213 ± 0.08 to 0.13 ± 0.06; p = 0.02). Tumor volume decreased with ADT. There was no difference between mpMRI-based and pathology-based RCB, which positively correlated (⍴ = 0.74-0.81, p < 0.05). Pathology-based RCB positively correlated with post-treatment DCE metrics (⍴ = 0.76-0.70, p < 0.05) and negatively with ADC (⍴ = -0.79, p = 0.03). CONCLUSION: Given the heterogeneity of PCa, an individualized approach to ADT may maximize potential benefit. This pilot study suggests that mpMRI may serve as a biomarker of ADT response and as a surrogate for RCB at prostatectomy.


Assuntos
Terapia Neoadjuvante , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Masculino , Imageamento por Ressonância Magnética Multiparamétrica , Projetos Piloto , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/terapia
13.
IEEE Trans Biomed Eng ; 67(2): 565-576, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31135342

RESUMO

OBJECTIVE: Accurate biopsy sampling of the suspected lesions is critical for the diagnosis and clinical management of prostate cancer. Transperineal in-bore MRI-guided prostate biopsy (tpMRgBx) is a targeted biopsy technique that was shown to be safe, efficient, and accurate. Our goal was to develop an open source software platform to support evaluation, refinement, and translation of this biopsy approach. METHODS: We developed SliceTracker, a 3D Slicer extension to support tpMRgBx. We followed modular design of the implementation to enable customization of the interface and interchange of image segmentation and registration components to assess their effect on the processing time, precision, and accuracy of the biopsy needle placement. The platform and supporting documentation were developed to enable the use of software by an operator with minimal technical training to facilitate translation. Retrospective evaluation studied registration accuracy, effect of the prostate segmentation approach, and re-identification time of biopsy targets. Prospective evaluation focused on the total procedure time and biopsy targeting error (BTE). RESULTS: Evaluation utilized data from 73 retrospective and ten prospective tpMRgBx cases. Mean landmark registration error for retrospective evaluation was 1.88 ± 2.63 mm, and was not sensitive to the approach used for prostate gland segmentation. Prospectively, we observed target re-identification time of 4.60 ± 2.40 min and BTE of 2.40 ± 0.98 mm. CONCLUSION: SliceTracker is modular and extensible open source platform for supporting image processing aspects of the tpMRgBx procedure. It has been successfully utilized to support clinical research procedures at our site.


Assuntos
Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata , Software , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Períneo/diagnóstico por imagem , Períneo/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
14.
Abdom Radiol (NY) ; 44(1): 279-285, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30066169

RESUMO

PURPOSE: To compare the predictive roles of qualitative (PI-RADSv2) and quantitative assessment (ADC metrics), in differentiating Gleason pattern (GP) 3 + 4 from the more aggressive GP 4 + 3 prostate cancer (PCa) using radical prostatectomy (RP) specimen as the reference standard. METHODS: We retrospectively identified treatment-naïve peripheral (PZ) and transitional zone (TZ) Gleason Score 7 PCa patients who underwent multiparametric 3T prostate MRI (DWI with b value of 0,1400 and where unavailable, 0,500) and subsequent RP from 2011 to 2015. For each lesion identified on MRI, a PI-RADSv2 score was assigned by a radiologist blinded to pathology data. A PI-RADSv2 score ≤ 3 was defined as "low risk," a PI-RADSv2 score ≥ 4 as "high risk" for clinically significant PCa. Mean tumor ADC (ADCT), ADC of adjacent normal tissue (ADCN), and ADCratio (ADCT/ADCN) were calculated. Stepwise regression analysis using tumor location, ADCT and ADCratio, b value, low vs. high PI-RADSv2 score was performed to differentiate GP 3 + 4 from 4 + 3. RESULTS: 119 out of 645 cases initially identified met eligibility requirements. 76 lesions were GP 3 + 4, 43 were 4 + 3. ADCratio was significantly different between the two GP groups (p = 0.001). PI-RADSv2 score ("low" vs. "high") was not significantly different between the two GP groups (p = 0.17). Regression analysis selected ADCT (p = 0.03) and ADCratio (p = 0.0007) as best predictors to differentiate GP 4 + 3 from 3 + 4. Estimated sensitivity, specificity, and accuracy of the predictive model in differentiating GP 4 + 3 from 3 + 4 were 37, 82, and 66%, respectively. CONCLUSIONS: ADC metrics could differentiate GP 3 + 4 from 4 + 3 PCa with high specificity and moderate accuracy while PI-RADSv2, did not differentiate between these patterns.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Sistemas de Informação em Radiologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Valor Preditivo dos Testes , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
15.
IEEE Trans Med Imaging ; 38(4): 1026-1036, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30334789

RESUMO

Image guidance improves tissue sampling during biopsy by allowing the physician to visualize the tip and trajectory of the biopsy needle relative to the target in MRI, CT, ultrasound, or other relevant imagery. This paper reports a system for fast automatic needle tip and trajectory localization and visualization in MRI that has been developed and tested in the context of an active clinical research program in prostate biopsy. To the best of our knowledge, this is the first reported system for this clinical application and also the first reported system that leverages deep neural networks for segmentation and localization of needles in MRI across biomedical applications. Needle tip and trajectory were annotated on 583 T2-weighted intra-procedural MRI scans acquired after needle insertion for 71 patients who underwent transperineal MRI-targeted biopsy procedure at our institution. The images were divided into two independent training-validation and test sets at the patient level. A deep 3-D fully convolutional neural network model was developed, trained, and deployed on these samples. The accuracy of the proposed method, as tested on previously unseen data, was 2.80-mm average in needle tip detection and 0.98° in needle trajectory angle. An observer study was designed in which independent annotations by a second observer, blinded to the original observer, were compared with the output of the proposed method. The resultant error was comparable to the measured inter-observer concordance, reinforcing the clinical acceptability of the proposed method. The proposed system has the potential for deployment in clinical routine.


Assuntos
Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neoplasias da Próstata , Algoritmos , Humanos , Masculino , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
16.
Sci Rep ; 9(1): 9441, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263116

RESUMO

In this study we assessed the repeatability of radiomics features on small prostate tumors using test-retest Multiparametric Magnetic Resonance Imaging (mpMRI). The premise of radiomics is that quantitative image-based features can serve as biomarkers for detecting and characterizing disease. For such biomarkers to be useful, repeatability is a basic requirement, meaning its value must remain stable between two scans, if the conditions remain stable. We investigated repeatability of radiomics features under various preprocessing and extraction configurations including various image normalization schemes, different image pre-filtering, and different bin widths for image discretization. Although we found many radiomics features and preprocessing combinations with high repeatability (Intraclass Correlation Coefficient > 0.85), our results indicate that overall the repeatability is highly sensitive to the processing parameters. Neither image normalization, using a variety of approaches, nor the use of pre-filtering options resulted in consistent improvements in repeatability. We urge caution when interpreting radiomics features and advise paying close attention to the processing configuration details of reported results. Furthermore, we advocate reporting all processing details in radiomics studies and strongly recommend the use of open source implementations.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Biomarcadores Tumorais/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes
17.
Tomography ; 5(1): 99-109, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854447

RESUMO

This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on pharmacokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine centers. Each center used a site-specific method to measure the individual AIF from each data set and submitted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans (volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and τi (mean intracellular water lifetime). All other variables, including the definition of the tumor region of interest and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation (wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and τi, respectively, using the unadjusted AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV = 0.50 and 0.10, respectively), but had smaller effects on kep and τi (wCV = 0.39 and 0.22, respectively). kep is less sensitive to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvasculature. With low sensitivity to AIF uncertainty, the SSM-unique τi parameter may have advantages over the conventional PK parameters in a longitudinal study.


Assuntos
Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/diagnóstico por imagem , Algoritmos , Artérias/diagnóstico por imagem , Meios de Contraste/farmacocinética , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Disseminação de Informação , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Biológicos , Neovascularização Patológica/diagnóstico por imagem , Reprodutibilidade dos Testes
18.
Sci Data ; 5: 180281, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30512014

RESUMO

Multiparametric Magnetic Resonance Imaging (mpMRI) is widely used for characterizing prostate cancer. Standard of care use of mpMRI in clinic relies on visual interpretation of the images by an expert. mpMRI is also increasingly used as a quantitative imaging biomarker of the disease. Little is known about repeatability of such quantitative measurements, and no test-retest datasets have been available publicly to support investigation of the technical characteristics of the MRI-based quantification in the prostate. Here we present an mpMRI dataset consisting of baseline and repeat prostate MRI exams for 15 subjects, manually annotated to define regions corresponding to lesions and anatomical structures, and accompanied by region-based measurements. This dataset aims to support further investigation of the repeatability of mpMRI-derived quantitative prostate measurements, study of the robustness and reliability of the automated analysis approaches, and to support development and validation of new image analysis techniques. The manuscript can also serve as an example of the use of DICOM for standardized encoding of the image annotation and quantification results.


Assuntos
Imageamento por Ressonância Magnética , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes
19.
Abdom Radiol (NY) ; 43(5): 1237-1244, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28840280

RESUMO

PURPOSE: To compare diagnostic performance of PI-RADSv2 with ADC parameters to identify clinically significant prostate cancer (csPC) and to determine the impact of csPC definitions on diagnostic performance of ADC and PI-RADSv2. METHODS: We retrospectively identified treatment-naïve pathology-proven peripheral zone PC patients who underwent 3T prostate MRI, using high b-value diffusion-weighted imaging from 2011 to 2015. Using 3D slicer, areas of suspected tumor (T) and normal tissue (N) on ADC (b = 0, 1400) were outlined volumetrically. Mean ADCT, mean ADCN, ADCratio (ADCT/ADCN) were calculated. PI-RADSv2 was assigned. Three csPC definitions were used: (A) Gleason score (GS) ≥ 4 + 3; (B) GS ≥ 3 + 4; (C) MRI-based tumor volume >0.5 cc. Performances of ADC parameters and PI-RADSv2 in identifying csPC were measured using nonparametric comparison of receiver operating characteristic curves using the area under the curve (AUC). RESULTS: Eighty five cases met eligibility requirements. Diagnostic performances (AUC) in identifying csPC using three definitions were: (A) ADCT (0.83) was higher than PI-RADSv2 (0.65, p = 0.006); (B) ADCT (0.86) was higher than ADCratio (0.68, p < 0.001), and PI-RADSv2 (0.70, p = 0.04); (C) PI-RADSv2 (0.73) performed better than ADCratio (0.56, p = 0.02). ADCT performance was higher when csPC was defined by A or B versus C (p = 0.038 and p = 0.01, respectively). ADCratio performed better when csPC was defined by A versus C (p = 0.01). PI-RADSv2 performance was not affected by csPC definition. CONCLUSIONS: When csPC was defined by GS, ADC parameters provided better csPC discrimination than PI-RADSv2, with ADCT providing best result. When csPC was defined by MRI-calculated volume, PI-RADSv2 provided better discrimination than ADCratio. csPC definition did not affect PI-RADSv2 diagnostic performance.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Diagnóstico Diferencial , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Estudos Retrospectivos , Sensibilidade e Especificidade
20.
J Med Imaging (Bellingham) ; 5(1): 011006, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29134189

RESUMO

This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA