Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Circadian Rhythms ; 17: 7, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31303885

RESUMO

Sleep seems essential to proper functioning of the prefrontal cortex (PFC). The role of different neurotransmitters has been studied, mainly the catecholamines and serotonin. Less attention has been paid to the amino acid transmitters and histamine. Here, we focus on the activity of these molecules in the PFC during sleep and sleep deprivation (SD). We determined extracellular concentrations of histamine and 8 amino acids in the medial PFC before, during and after SD. Additionally, we systematically reviewed the literature on studies reporting microdialysis measurements relating to sleep throughout the brain. In our experiment, median concentrations of glutamate were higher during SD than during baseline (p = 0.013) and higher during the dark-active than during the resting phase (p = 0.003). Glutamine was higher during post-SD recovery than during baseline (p = 0.010). For other compounds, no differences were observed between light and dark circadian phase, and between sleep deprivation, recovery and baseline. We retrieved 13 papers reporting on one or more of the molecules of interest during naturally occurring sleep, 2 during sleep deprivation and 2 during both. Only two studies targeted PFC. Histamine was low during sleep, but high during sleep deprivation and wakefulness, irrespective of brain area. Glu (k = 11) and GABA (k = 8) concentrations in different brain areas were reported to peak during sleep or wakefulness or to lack state-dependency. Aspartate, glycine, asparagine and taurine were less often studied (1-2 times), but peaked exclusively during sleep. Sleep deprivation increased glutamate and GABA exclusively in the cortex. Further studies are needed for drawing solid conclusions.

2.
J Circadian Rhythms ; 17: 1, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30671123

RESUMO

Disruption of the monoaminergic system, e.g. by sleep deprivation (SD), seems to promote certain diseases. Assessment of monoamine levels over the circadian cycle, during different sleep stages and during SD is instrumental to understand the molecular dynamics during and after SD. To provide a complete overview of all available evidence, we performed a systematic review. A comprehensive search was performed for microdialysis and certain monoamines (dopamine, serotonin, noradrenaline, adrenaline), certain monoamine metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA)) and a precursor (5-hydroxytryptophan (5-HTP)) in PubMed and EMBASE. After screening of the search results by two independent reviewers, 94 publications were included. All results were tabulated and described qualitatively. Network-meta analyses (NMAs) were performed to compare noradrenaline and serotonin concentrations between sleep stages. We further present experimental monoamine data from the medial prefrontal cortical (mPFC). Monoamine levels varied with brain region and circadian cycle. During sleep, monoamine levels generally decreased compared to wake. These qualitative observations were supported by the NMAs: noradrenaline and serotonin levels decreased from wakefulness to slow wave sleep and decreased further during Rapid Eye Movement sleep. In contrast, monoamine levels generally increased during SD, and sometimes remained high even during subsequent recovery. Decreases during or after SD were only reported for serotonin. In our experiment, SD did not affect any of the mPFC monoamine levels. Concluding, monoamine levels vary over the light-dark cycle and between sleep stages. SD modifies the patterns, with effects sometimes lasting beyond the SD period.

3.
J Circadian Rhythms ; 16: 11, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30483348

RESUMO

The neuroregulator adenosine is involved in sleep-wake control. Basal forebrain (BF) adenosine levels increase during sleep deprivation. Only a few studies have addressed the effect of sleep deprivation on extracellular adenosine concentrations in other brain regions. In this paper, we describe a microdialysis experiment as well as a meta-analysis of published data. The 64 h microdialysis experiment determined the extracellular adenosine and adenosine monophosphate (AMP) concentrations in the medial prefrontal cortex of rats before, during and after 12 h of sleep deprivation by forced locomotion. The meta-analysis comprised published sleep deprivation animal experiments measuring adenosine by means of microdialysis. In the animal experiment, the overall median adenosine concentration was 0.36 nM and ranged from 0.004 nM to 27 nM. No significant differences were observed between the five conditions: 12 h of wash-out, baseline light phase, baseline dark phase, 12 h of sleep deprivation and 12 h of subsequent recovery. The overall median AMP concentration was 0.10 nM and ranged from 0.001 nM to 7.56 nM. Median AMP concentration increased during sleep deprivation (T = 47; p = 0.047) but normalised during subsequent recovery. The meta-analysis indicates that BF dialysate adenosine concentrations increase with 74.7% (95% CI: 54.1-95.3%) over baseline during sleep deprivation. Cortex dialysate adenosine concentrations during sleep deprivation were so far only reported by 2 publications. The increase in adenosine during sleep deprivation might be specific to the BF. At this stage, the evidence for adenosine levels in other brain regions is based on single experiments and insufficient for generalised conclusions. Further experiments are currently still warranted.

4.
J Neurochem ; 123(6): 897-903, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061486

RESUMO

Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is effective in treatment-refractory obsessive-compulsive disorder and major depressive disorder. However, little is known about the neurobiological mechanisms underlying the rapid and effective changes of DBS. One of the hypotheses is that DBS modulates activity of monoamine neurotransmitters. In this study, we evaluated the effects of DBS in the NAc core on the extracellular concentration of monoaminergic neurotransmitters in the medial (mPFC) and orbital prefrontal cortex (OFC). Freely moving rats were bilaterally stimulated in the NAc core for 2 h while dopamine, serotonin, and noradrenaline were measured using in vivo microdialysis in the mPFC and the OFC. We report rapid increases in the release of dopamine and serotonin to a maximum of 177% and 127% in the mPFC and an increase up to 171% and 166% for dopamine and noradrenaline in the OFC after onset of stimulation in the NAc core. These results provide further evidence for the distal effects of DBS and corroborate previous clinical and pre-clinical findings of altered neuronal activity in prefrontal areas.


Assuntos
Monoaminas Biogênicas/metabolismo , Estimulação Encefálica Profunda/métodos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Regulação para Cima/fisiologia , Animais , Dopamina/metabolismo , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Norepinefrina/metabolismo , Núcleo Accumbens/citologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Wistar , Serotonina/metabolismo
5.
Clocks Sleep ; 3(1): 31-52, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498259

RESUMO

Animals, including humans, frequently make decisions involving risk or uncertainty. Different strategies in these decisions can be advantageous depending the circumstances. Short sleep duration seems to be associated with more risky decisions in humans. Animal models for risk-based decision making can increase mechanistic understanding, but very little data is available concerning the effects of sleep. We combined primary- and meta-research to explore the relationship between sleep and risk-based decision making in animals. Our first objective was to create an overview of the available animal models for risky decision making. We performed a systematic scoping review. Our searches in Pubmed and Psychinfo retrieved 712 references, of which 235 were included. Animal models for risk-based decision making have been described for rodents, non-human primates, birds, pigs and honey-bees. We discuss task designs and model validity. Our second objective was to apply this knowledge and perform a pilot study on the effect of sleep deprivation. We trained and tested male Wistar rats on a probability discounting task; a "safe" lever always resulted in 1 reward, a "risky" lever resulted in 4 or no rewards. Rats adapted their preferences to variations in reward probabilities (p < 0.001), but 12 h of sleep deprivation during the light phase did not clearly alter risk preference (p = 0.21).

6.
J Neurosci ; 29(28): 8965-76, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605634

RESUMO

The orbitofrontal cortex (OFC) has been implicated in decision-making under uncertainty, but it is unknown how information about the probability or uncertainty of future reward is coded by single orbitofrontal neurons and ensembles. We recorded neuronal ensembles in rat OFC during an olfactory discrimination task in which different odor stimuli predicted different reward probabilities. Single-unit firing patterns correlated to the expected reward probability primarily within an immobile waiting period before reward delivery but also when the rat executed movements toward the reward site. During these pre-reward periods, a subset of OFC neurons was sensitive to differences in probability but only very rarely discriminated on the basis of reward uncertainty. In the reward period, neurons responded during presentation or omission of reward or during both types of outcome. At the population level, neurons were characterized by a wide divergence in firing-rate variability attributable to expected probability. A population analysis using template matching as reconstruction method indicated that OFC generates a distributed representation of reward probability with a weak dependence on neuronal group size. The analysis furthermore confirmed that predictive information coded by OFC populations was quantitatively related to reward probability, but not to uncertainty.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Probabilidade , Recompensa , Animais , Comportamento Animal , Mapeamento Encefálico , Condicionamento Operante , Tomada de Decisões , Discriminação Psicológica/fisiologia , Masculino , Movimento/fisiologia , Neurônios/classificação , Odorantes , Condutos Olfatórios/fisiologia , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Fatores de Tempo
7.
FASEB J ; 23(8): 2710-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19332645

RESUMO

Increased expression of the astrocytic intermediate filament protein glial fibrillary acidic protein (GFAP) is a characteristic of astrogliosis. This process occurs in the brain during aging and neurodegeneration and coincides with impairment of the ubiquitin proteasome system. Inhibition of the proteasome impairs protein degradation; therefore, we hypothesized that the increase in GFAP may be the result of impaired proteasomal activity in astrocytes. We investigated the effect of proteasome inhibitors on GFAP expression and other intermediate filament proteins in human astrocytoma cells and in a rat brain model for astrogliosis. Extensive quantitative RT-PCR, immunocytochemistry, and Western blot analysis resulted unexpectedly in a strong decrease of GFAP mRNA to <4% of control levels [Control (DMSO) 100+/-19.2%; proteasome inhibitor (epoxomicin) 3.5+/-1.3%, n=8; P < or = 0.001] and a loss of GFAP protein in astrocytes in vitro. We show that the proteasome alters GFAP promoter activity, possibly mediated by transcription factors as demonstrated by a GFAP promoter-luciferase assay and RT(2) Profiler PCR array for human transcription factors. Most important, we demonstrate that proteasome inhibitors also reduce GFAP and vimentin expression in a rat model for induced astrogliosis in vivo. Therefore, proteasome inhibitors could serve as a potential therapy to modulate astrogliosis associated with CNS injuries and disease.


Assuntos
Astrócitos/metabolismo , Filamentos Intermediários/metabolismo , Inibidores de Proteassoma , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular , Regulação para Baixo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Células HeLa , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vimentina/genética , Vimentina/metabolismo
8.
Behav Brain Res ; 186(1): 23-31, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17714800

RESUMO

Cognitive flexibility (i.e. the ability to adapt goal-directed behaviour in response to changed environmental demands) has repeatedly been shown to depend on the prefrontal cortex (PFC). Recent data from primate studies moreover show that depletion of prefrontal 5-HT impairs reversal learning of visual stimuli [Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 2005;25:532-8; Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 2007;17:18-27]. It is not clear however if 5-HT serves a general role in reversal learning or if it is involved only in specific reversal problems. A first aim of these experiments was to study the role of 5-HT in serial reversal learning of a spatial discrimination. Literature has, moreover, repeatedly shown that the PFC is involved in the initial acquisition of a reversal problem but hardly when the task is well practiced. A second aim concerns the role of 5-HT in early versus late reversal learning. With the current experiment, we aim to clarify whether 5-HT is differentially involved in early versus late reversal learning. To this end, we tested rats on a serial two-lever reversal task and induced a temporary reduction of 5-HT availability in these rats by restricting dietary intake of the 5-HT precursor tryptophan at an early and a late reversal. Our results indicate that acute tryptophan depletion (ATD) did not affect either early or late reversal learning, nor extinction and suggest that spatial reversal learning, in contrast to visual reversal learning, might not be dependent on 5-HT. The data furthermore provide insight in the behavioural strategies employed in serial reversal learning and suggests the formation of a learning-set.


Assuntos
Aprendizagem por Discriminação/fisiologia , Córtex Pré-Frontal/metabolismo , Reversão de Aprendizagem/fisiologia , Aprendizagem Seriada/fisiologia , Triptofano/deficiência , Análise de Variância , Animais , Extinção Psicológica/fisiologia , Masculino , Ratos , Ratos Wistar , Serotonina/metabolismo , Comportamento Espacial/fisiologia , Fatores de Tempo , Triptofano/metabolismo
9.
Biol Psychiatry ; 84(12): 917-925, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29954580

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment for patients with obsessive-compulsive disorder (OCD) that do not respond to conventional therapies. Although the precise mechanism of action of DBS remains unknown, modulation of activity in corticofugal fibers originating in the prefrontal cortex is thought to underlie its beneficial effects in OCD. METHODS: To gain more mechanistic insight into DBS in OCD, we used Sapap3 mutant mice. These mice display excessive self-grooming and increased anxiety, both of which are responsive to therapeutic drugs used in OCD patients. We selected two clinically relevant DBS targets through which activity in prefronto-corticofugal fibers may be modulated: the internal capsule (IC) and the dorsal part of the ventral striatum (dVS). RESULTS: IC-DBS robustly decreased excessive grooming, whereas dVS-DBS was on average less effective. Grooming was reduced rapidly after IC-DBS onset and reinstated upon DBS offset. Only IC-DBS was associated with increased locomotion. DBS in both targets induced c-Fos expression around the electrode tip and in different regions of the prefrontal cortex. This prefronto-cortical activation was more extensive after IC-DBS, but not associated with behavioral effects. Furthermore, we found that the decline in grooming cannot be attributed to altered locomotor activity and that anxiety, measured on the elevated plus maze, was not affected by DBS. CONCLUSIONS: DBS in both the IC and dVS reduces compulsive grooming in Sapap3 mutant mice. However, IC stimulation was more effective, but also produced motor activation, even though both DBS targets modulated activity in a similar set of prefrontal cortical fibers.


Assuntos
Estimulação Encefálica Profunda , Asseio Animal , Cápsula Interna/cirurgia , Transtorno Obsessivo-Compulsivo/psicologia , Estriado Ventral/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/terapia
10.
Psychopharmacology (Berl) ; 195(3): 377-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17713760

RESUMO

RATIONALE: Acute tryptophan depletion (ATD) is a widely used method to study the role of serotonin (5-HT) in affect and cognition. ATD results in a strong but transient decrease in plasma tryptophan and central 5-HT synthesis and availability. Although its use is widespread, the evidence that the numerous functional effects of ATD are caused by actual changes in 5-HT neuronal release is not very strong. Thus far, decreases in 5-HT efflux (thought to reflect synaptic release) were only reported after chronic tryptophan depletion or when ATD was combined with blockade of 5-HT reuptake. OBJECTIVE: With the current experiment, we aimed to study the validity of the method of ATD by measuring the extent to which it reduces the efflux of 5-HT (and dopamine) in the prefrontal cortex in the absence of reuptake blockage. MATERIALS AND METHODS: We simultaneously measured in freely moving animals plasma tryptophan via a catheter in the jugular vein and 5-HT and DA efflux in the medial prefrontal cortex through microdialysis after ATD treatment. RESULTS: ATD reduced plasma tryptophan to less than 30% of control, without affecting 5-HT or DA efflux in the prefrontal cortex, indicating that even strong reductions of plasma tryptophan do not necessarily result in decreases in central 5-HT efflux. CONCLUSION: The present experiment showed that reductions in plasma tryptophan, similar to values associated with behavioural effects, do not necessarily reduce 5-HT efflux and suggest that the cognitive and behavioural effects of ATD may not be (exclusively) due to alterations in 5-HT release.


Assuntos
Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Serotonina/metabolismo , Triptofano/sangue , Triptofano/deficiência , Análise de Variância , Animais , Comportamento Animal , Dieta , Masculino , Microdiálise , Atividade Motora , Ratos , Ratos Wistar , Triptofano/administração & dosagem
11.
Psychopharmacology (Berl) ; 195(3): 435-49, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17874235

RESUMO

RATIONALE: Across species, serotonin (5-HT) depletion in the prefrontal cortex (PFC) has been shown to cause impaired performance on tests of cognitive flexibility and the processing of affective information (e.g. information with an 'emotional' content). While recent work has explored the specific role of the orbital PFC herein, the role of the medial PFC remains unclear. OBJECTIVES: The aim of our current experiments was to study the role of medial PFC 5-HT in both the processing of affective information and reversal learning across stimulus modalities. MATERIALS AND METHODS: To this end, we selectively destroyed 5-HT terminals in the medial PFC of male Wistar rats by means of local infusion of the toxin 5,7-dihydroxytryptamine. Both control and lesioned animals were tested in two reversal learning paradigms with either spatial or odour cues and an affective switch from non-preferred to preferred food rewards. RESULTS: Our results indicate that a pellet switch during reversal learning impaired performance in control animals but not in lesioned animals, independent of the stimulus modality. CONCLUSION: These results indicate that lesioned animals are not guided in their behaviour by the affective value of the reward like intact animals and thus that medial prefrontal 5-HT is needed for affective processing in goal-directed behaviour.


Assuntos
Comportamento Animal , Objetivos , Córtex Pré-Frontal/metabolismo , Serotonina/fisiologia , 5,7-Di-Hidroxitriptamina/farmacologia , Afeto , Animais , Cognição , Sinais (Psicologia) , Masculino , Ratos , Ratos Wistar , Reversão de Aprendizagem , Recompensa , Serotoninérgicos/farmacologia , Olfato , Comportamento Espacial
12.
Eur Neuropsychopharmacol ; 26(2): 310-319, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712326

RESUMO

The efficacy of selective serotonin reuptake inhibitors (SRIs) in psychiatric disorders may be "augmented" through the addition of atypical antipsychotic drugs. A synergistic increase in dopamine (DA) release in the prefrontal cortex has been suggested to underlie this augmentation effect, though the mechanism of action is not clear yet. We used in vivo microdialysis in rats to study DA release following the administration of combinations of fluvoxamine (10 mg/kg) and quetiapine (10 mg/kg) with various monoamine-related drugs. The results confirmed that the selective 5-HT1A antagonist WAY-100635 (0.05 mg/kg) partially blocked the fluvoxamine-quetiapine synergistic effect (maximum DA increase dropped from 325% to 214%). A novel finding is that the α1-adrenergic blocker prazosin (1 mg/kg), combined with fluvoxamine, partially mimicked the effect of augmentation (maximum DA increase 205%; area-under-the-curve 163%). As this suggested that prazosin augmentation might be tested in a clinical study, we performed an open clinical trial of prazosin 20 mg addition to SRI in therapy-resistant patients with obsessive-compulsive disorder applying for neurosurgery. A small, non-significant reduction in Yale Brown Obsessive Compulsive Scale (Y-BOCS) scores was observed in 10 patients and one patient was classified as a responder with a reduction in Y-BOCS scores of more than 25%. We suggest that future clinical studies augmenting SRIs with an α1-adrenergic blocker in less treatment resistant cases should be considered. The clinical trial "Prazosin in combination with a serotonin reuptake inhibitor for patients with Obsessive Compulsive disorder: an open label study" was registered at 24/05/2011 under trial number ISRCTN61562706: http://www.controlled-trials.com/ISRCTN61562706.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Antidepressivos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fluvoxamina/uso terapêutico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Prazosina/uso terapêutico , Adulto , Animais , Área Sob a Curva , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/uso terapêutico , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Adulto Jovem
13.
J Neurosci ; 24(10): 2475-80, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15014123

RESUMO

We trained rats to learn that an auditory stimulus predicted delivery of reward pellets in the Skinner box. After 2 d of training, we measured changes in efflux of noradrenaline (NA) and dopamine (DA) in the medial prefrontal cortex using microdialysis on the third day. Animals were subjected to a normal rewarded session and an extinction session, in which the auditory stimulus was presented alone. In the rewarded session, both NA and DA efflux were increased, but in extinction, only NA was activated. The data suggest that NA has a role in the reaction to reward-predicting stimuli, which complements that of DA.


Assuntos
Comportamento Apetitivo/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Norepinefrina/metabolismo , Córtex Pré-Frontal/metabolismo , Estimulação Acústica , Animais , Comportamento Animal/fisiologia , Extinção Psicológica/fisiologia , Masculino , Microdiálise , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Recompensa
14.
J Clin Endocrinol Metab ; 88(12): 5898-906, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14671188

RESUMO

A disturbed sleep-wake rhythm is common in Alzheimer disease (AD) patients and correlated with decreased melatonin levels and a disrupted circadian melatonin rhythm. Melatonin levels in the cerebrospinal fluid are decreased during the progression of AD neuropathology (as determined by the Braak stages), already in cognitively intact subjects with the earliest AD neuropathology (Braak stages I-II) (preclinical AD). To investigate the molecular mechanisms behind the decreased melatonin levels, we measured monoamines and mRNA levels of enzymes of the melatonin synthesis and its noradrenergic regulation in pineal glands from 18 controls, 33 preclinical AD subjects, and 25 definite AD patients. Pineal melatonin levels were highly correlated with cerebrospinal fluid melatonin levels. The circadian melatonin rhythm disappeared because of decreased nocturnal melatonin levels in both the preclinical AD and AD patients. Also the circadian rhythm of beta(1)-adrenergic receptor mRNA disappeared in both patient groups. The precursor of melatonin, serotonin was stepwise depleted during the course of AD, as indicated by the up-regulated monoamine oxidase A mRNA and activity (5-hydroxyindoleacetic acid:serotonin ratio). We conclude that a dysfunction of noradrenergic regulation and the depletion of serotonin by increased monoamine oxidase A result in the loss of melatonin rhythm already in preclinical AD.


Assuntos
Doença de Alzheimer/metabolismo , Melatonina/metabolismo , Glândula Pineal/metabolismo , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/fisiopatologia , Estudos de Casos e Controles , Ritmo Circadiano , Dopamina/metabolismo , Humanos , Ácido Hidroxi-Indolacético/metabolismo , Melatonina/biossíntese , Melatonina/líquido cefalorraquidiano , Monoaminoxidase/genética , Norepinefrina/metabolismo , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta 1/genética , Serotonina/metabolismo
15.
Neuroreport ; 14(17): 2225-8, 2003 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-14625452

RESUMO

We tested the hypothesis that inhibition of NMDA-receptors in rats would lead to a selective impairment of reversal learning in a serial reversal task in the Skinner box. Low doses of MK-801 (0.025 and 0.05 mg/kg) did not affect acquisition of the two-lever discrimination, but impaired performance during the first reversal more than during the third reversal. Similar effects were observed during the series of extinction sessions. The high dose (0.1 mg/kg) completely inhibited reversal and extinction learning, as the rats perseverated in pressing the previously rewarded lever(s). We conclude that NMDA receptor blockade leads to a selective impairment in cognitive flexibility, and shows some similarity to transient inactivation of the medial prefrontal cortex in this respect.


Assuntos
Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/fisiologia , Reversão de Aprendizagem/fisiologia
16.
Front Neurosci ; 7: 226, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339800

RESUMO

Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 µA increased Fos immunoreactivity in the LHA compared to sham or 100 µA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

17.
J Neurosci Methods ; 217(1-2): 44-53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23603331

RESUMO

The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement.


Assuntos
Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Aprendizagem/fisiologia , Modelos Animais , Desempenho Psicomotor/fisiologia , Sono/fisiologia , Animais , Mapeamento Encefálico , Humanos , Masculino , Ratos , Ratos Wistar
18.
Behav Brain Res ; 230(1): 40-7, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22321457

RESUMO

Sleep deprivation affects cognitive functions that depend on the prefrontal cortex (PFC) such as cognitive flexibility, and the consolidation of newly learned information. The identification of cognitive processes that are either robustly sensitive or robustly insensitive to the same experimental sleep deprivation procedure, will allow us to better focus on the specific effects of sleep on cognition, and increase understanding of the mechanisms involved. In the present study we investigate whether sleep deprivation differentially affects the two separate cognitive processes of acquisition and consolidation of a spatial reversal task. After training on a spatial discrimination between two levers in a Skinner box, male Wistar rats were exposed to a reversal of the previously learned stimulus-response contingency. We first evaluated the effect of sleep deprivation on the acquisition of reversal learning. Performance on reversal learning after 12h of sleep deprivation (n=12) was compared to performance after control conditions (n=12). The second experiment evaluated the effect of sleep deprivation on the consolidation of reversal learning; the first session of reversal learning was followed by 3h of nap prevention (n=8) or undisturbed control conditions (n=8). The experiments had sufficient statistical power (0.90 and 0.81, respectively) to detect differences with medium effect sizes. Neither the acquisition, nor the consolidation, of reversal learning was affected by acute sleep deprivation. Together with previous findings, these results help to further delineate the role of sleep in cognitive processing.


Assuntos
Reversão de Aprendizagem/fisiologia , Privação do Sono/fisiopatologia , Comportamento Espacial/fisiologia , Adaptação Fisiológica , Análise de Variância , Animais , Condicionamento Operante , Sinais (Psicologia) , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar
19.
Sleep ; 35(2): 211-21, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22294811

RESUMO

STUDY OBJECTIVES: Task-switching is an executive function involving the prefrontal cortex. Switching temporarily attenuates the speed and/or accuracy of performance, phenomena referred to as switch costs. In accordance with the idea that prefrontal function is particularly sensitive to sleep loss, switch-costs increase during prolonged waking in humans. It has been difficult to investigate the underlying neurobiological mechanisms because of the lack of a suitable animal model. Here, we introduce the first switch-task for rats and report the effects of sleep deprivation and inactivation of the medial prefrontal cortex. DESIGN: Rats were trained to repeatedly switch between 2 stimulus-response associations, indicated by the presentation of a visual or an auditory stimulus. These stimulus-response associations were offered in blocks, and performance was compared for the first and fifth trials of each block. Performance was tested after exposure to 12 h of total sleep deprivation, sleep fragmentation, and their respective movement control conditions. Finally, it was tested after pharmacological inactivation of the medial prefrontal cortex. SETTINGS: Controlled laboratory settings. PARTICIPANTS: 15 male Wistar rats. MEASUREMENTS & RESULTS: Both accuracy and latency showed switch-costs at baseline. Twelve hours of total sleep deprivation, but not sleep fragmentation, impaired accuracy selectively on the switch-trials. Inactivation of the medial prefrontal cortex by local neuronal inactivation resulted in an overall decrease in accuracy. CONCLUSIONS: We developed and validated a switch-task that is sensitive to sleep deprivation. This introduces the possibility for in-depth investigations on the neurobiological mechanisms underlying executive impairments after sleep disturbance in a rat model.


Assuntos
Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor , Privação do Sono/fisiopatologia , Sono/fisiologia , Análise de Variância , Animais , Atenção , Condicionamento Psicológico , Modelos Animais de Doenças , Eletroencefalografia , Função Executiva , Masculino , Ratos , Ratos Wistar , Tempo de Reação , Análise e Desempenho de Tarefas , Fatores de Tempo , Vigília
20.
Artigo em Inglês | MEDLINE | ID: mdl-21435352

RESUMO

This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA