Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 82(15): 2858-2870.e8, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35732190

RESUMO

The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3ß lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.


Assuntos
Asparaginase , Leucemia , Aminoácidos/metabolismo , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/farmacologia , Asparagina , Humanos , Proteínas Serina-Treonina Quinases
2.
Nat Immunol ; 18(6): 622-632, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459433

RESUMO

The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.


Assuntos
Calgranulina A/imunologia , Calgranulina B/imunologia , Imunidade Inata/imunologia , Monócitos/imunologia , Sepse Neonatal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Recém-Nascidos , Calgranulina A/efeitos dos fármacos , Calgranulina B/efeitos dos fármacos , Epigênese Genética , Sangue Fetal , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Immunoblotting , Recém-Nascido , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Monócitos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Sepse Neonatal/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor 4 Toll-Like/imunologia
4.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686063

RESUMO

Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias , Aminoácidos , Asparagina , Quinase 3 da Glicogênio Sintase/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases , Proteínas Ribossômicas/genética , Humanos
5.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805279

RESUMO

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Adulto , Animais , Biópsia , Calgranulina A/administração & dosagem , Calgranulina A/análise , Calgranulina B/análise , Calgranulina B/genética , Pré-Escolar , Colo/microbiologia , Colo/patologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Disbiose/prevenção & controle , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Fezes/química , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Imunidade nas Mucosas , Lactente , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/epidemiologia , Obesidade/imunologia , Obesidade/microbiologia , Obesidade/prevenção & controle , RNA Ribossômico 16S/genética , Sepse/epidemiologia , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
6.
FASEB J ; 33(10): 10633-10647, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31262195

RESUMO

Newborn infants have a high disposition to develop systemic inflammatory response syndromes (SIRSs) upon inflammatory or infectious challenges. Moreover, there is a considerable trafficking of hematopoietic cells to tissues already under noninflammatory conditions. These age-specific characteristics suggest a hitherto unappreciated crucial role of the vascular endothelium during the neonatal period. Here, we demonstrate that healthy neonates showed already strong endothelial baseline activation, which was mediated by a constitutively increased production of TNF-α. In mice, pharmacological inhibition of TNF-α directly after birth prevented subsequent fatal SIRS but completely abrogated the recruitment of leukocytes to sites of infection. Importantly, in healthy neonates, blocking TNF-α at birth disrupted the physiologic leukocyte trafficking, which resulted in persistently altered leukocyte profiles at barrier sites. Collectively, these data suggest that constitutive TNF-α-mediated sterile endothelial activation in newborn infants contributes to the increased risk of developing SIRS but is needed to ensure the postnatal recruitment of leukocytes to organs and interfaces.-Bickes, M. S., Pirr, S., Heinemann, A. S., Fehlhaber, B., Halle, S., Völlger, L., Willers, M., Richter, M., Böhne, C., Albrecht, M., Langer, M., Pfeifer, S., Jonigk, D., Vieten, G., Ure, B., von Kaisenberg, C., Förster, R., von Köckritz-Blickwede, M., Hansen, G., Viemann, D. Constitutive TNF-α signaling in neonates is essential for the development of tissue-resident leukocyte profiles at barrier sites.


Assuntos
Recém-Nascido/sangue , Recém-Nascido/imunologia , Leucócitos/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia , Animais , Animais Recém-Nascidos , Estudos de Casos e Controles , Modelos Animais de Doenças , Endotélio Vascular/imunologia , Etanercepte/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunossupressores/farmacologia , Recém-Nascido Prematuro , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Transdução de Sinais/imunologia , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Fator de Necrose Tumoral alfa/antagonistas & inibidores
7.
FASEB J ; 32(1): 26-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855276

RESUMO

Leukocytes express formyl-peptide receptors (FPRs), which sense microbe-associated molecular pattern (MAMP) molecules, leading to leukocyte chemotaxis and activation. We recently demonstrated that phenol-soluble modulin (PSM) peptides from highly pathogenic Staphylococcus aureus are efficient ligands for the human FPR2. How PSM detection by FPR2 impacts on the course of S. aureus infections has remained unknown. We characterized the specificity of mouse FPR2 (mFpr2) using a receptor-transfected cell line, homeobox b8 (Hoxb8), and primary neutrophils isolated from wild-type (WT) or mFpr2-/- mice. The influx of leukocytes into the peritoneum of WT and mFpr2-/- mice was analyzed. We demonstrate that mFpr2 is specifically activated by PSMs in mice, and they represent the first secreted pathogen-derived ligands for the mFpr2. Intraperitoneal infection with S. aureus led to lower numbers of immigrated leukocytes in mFpr2-/- compared with WT mice at 3 h after infection, and this difference was not observed when mice were infected with an S. aureus PSM mutant. Our data support the hypothesis that the mFpr2 is the functional homolog of the human FPR2 and that a mouse infection model represents a suitable model for analyzing the role of PSMs during infection. PSM recognition by mFpr2 shapes leukocyte influx in local infections, the typical infections caused by S. aureus-Weiss, E., Hanzelmann, D., Fehlhaber, B., Klos, A., von Loewenich, F. D., Liese, J., Peschel, A., Kretschmer, D. Formyl-peptide receptor 2 governs leukocyte influx in local Staphylococcus aureus infections.


Assuntos
Leucócitos/imunologia , Receptores de Formil Peptídeo/imunologia , Receptores de Lipoxinas/imunologia , Infecções Estafilocócicas/imunologia , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Sinalização do Cálcio/imunologia , Degranulação Celular/imunologia , Linhagem Celular , Movimento Celular/imunologia , Modelos Animais de Doenças , Feminino , Genes Bacterianos , Proteínas de Homeodomínio/imunologia , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neutrófilos/imunologia , Receptores de Formil Peptídeo/deficiência , Receptores de Formil Peptídeo/genética , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
8.
FASEB J ; 31(3): 1153-1164, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27993995

RESUMO

The high susceptibility of newborn infants to sepsis is ascribed to an immaturity of the neonatal immune system, but the molecular mechanisms remain unclear. Newborn monocytes massively release the alarmins S100A8/S100A9. In adults, these are major regulators of immunosuppressive myeloid-derived suppressor cells (MDSCs). We investigated whether S100A8/S100A9 cause an expansion of monocytic MDSCs (Mo-MDSCs) in neonates, thereby contributing to an immunocompromised state. Mo-MDSCs have been assigned to CD14+/human leukocyte antigen (HLA)-DR-/low/CD33+ monocytes in humans and to CD11b+/Gr-1int/Ly6G-/Ly6Chi cells in mice. We found monocytes with these phenotypes significantly expanded in their respective newborns. Functionally, however, they did not prove immunosuppressive but rather responded inflammatorily to microbial stimulation. Their expansion did not correlate with high S100A8/S100A9 levels in cord blood. Murine studies revealed an excessive expansion of CD11b+/Gr-1int/Ly6G-/Ly6Chi monocytes in S100A9-/- neonates compared to wild-type neonates. This strong baseline expansion was associated with hyperinflammatory responses during endotoxemia and fatal septic courses. Treating S100A9-/- neonates directly after birth with S100A8/S100A9 alarmins prevented excessive expansion of this inflammatory monocyte population and death from septic shock. Our data suggest that a specific population of inflammatory monocytes promotes fatal courses of sepsis in neonates if its expansion is not regulated by S100A8/S100A9 alarmins.-Heinemann, A. S., Pirr, S., Fehlhaber, B., Mellinger, L., Burgmann, J., Busse, M., Ginzel, M., Friesenhagen, J., von Köckritz-Blickwede, M., Ulas, T., von Kaisenberg, C. S., Roth, J., Vogl, T., Viemann, D. In neonates S100A8/S100A9 alarmins prevent the expansion of a specific inflammatory monocyte population promoting septic shock.


Assuntos
Alarminas/sangue , Calgranulina A/sangue , Calgranulina B/sangue , Monócitos/imunologia , Sepse Neonatal/sangue , Animais , Calgranulina A/uso terapêutico , Calgranulina B/uso terapêutico , Células Cultivadas , Feminino , Humanos , Recém-Nascido , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse Neonatal/prevenção & controle , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
9.
J Infect Dis ; 209(8): 1269-78, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24273177

RESUMO

BACKGROUND: The complement system protects against extracellular pathogens and links innate and adaptive immunity. In this study, we investigated the anaphylatoxin C3a receptor (C3aR) in Chlamydia psittaci lung infection and elucidated C3a-dependent adaptive immune mechanisms. METHODS: Survival, body weight, and clinical score were monitored in primary mouse infection and after serum transfer. Bacterial load, histology, cellular distribution, cytokines, antibodies, and lymphocytes were analyzed. RESULTS: C3aR(-/-) mice showed prolonged pneumonia with decreased survival, lower weight, and higher clinical score. Compared to wild-type mice bacterial clearance was impaired, and inflammatory parameters were increased. In lung-draining lymph nodes of C3aR(-/-) mice the total number of B cells, CD4(+) T cells, and Chlamydia-specific IFN-γ(+) (CD4(+) or CD8(+)) cells was reduced upon infection, and the mice were incapable of Chlamydia-specific immunoglobulin M or immunoglobulin G production. Performed before infection, transfer of hyperimmune serum prolonged survival of C3aR(-/-) mice. CONCLUSIONS: C3a and its receptor are critical for defense against C. psittaci in mouse lung infection. In this model, C3a acts via its receptor as immune modulator. Enhancement of specific B and T cell responses upon infection with an intracellular bacterium were identified as hitherto unknown features of C3a/C3aR. These new functions might be of general immunological importance.


Assuntos
Imunidade Adaptativa/imunologia , Infecções por Chlamydophila/prevenção & controle , Chlamydophila psittaci/patogenicidade , Pulmão/microbiologia , Pneumonia Bacteriana/prevenção & controle , Receptores de Complemento/fisiologia , Linfócitos T/imunologia , Animais , Anticorpos Antibacterianos/sangue , Infecções por Chlamydophila/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Camundongos , Pneumonia Bacteriana/imunologia
10.
Immunol Cell Biol ; 92(7): 631-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24777312

RESUMO

The complement system is a major component of our innate immune system, in which the complement proteins C5a and C5a-des Arg bind to two G-protein-coupled receptors: namely, the C5a receptor (C5a1) and C5a receptor like-2 receptor (C5a2, formerly called C5L2). Recently, it has been demonstrated that C5a, but not C5a-des Arg, upregulates heteromer formation between C5a1 and C5a2, leading to an increase in IL-10 release from human monocyte-derived macrophages (HMDMs). A bioluminescence resonance energy transfer (BRET) assay was used to assess the recruitment of ß-arrestins by C5a and C5a-des Arg at the C5a1 and C5a2 receptors. C5a demonstrated elevated ß-arrestin 2 recruitment levels in comparison with C5a-des Arg, whereas no significant difference was observed at C5a2. A constitutive complex that formed between ß-arrestin 2 and C5a2 accounted for half of the BRET signal observed. Interestingly, both C5a and C5a-des Arg exhibited higher potency for ß-arrestin 2 recruitment via C5a2, indicating preference for C5a2 over C5a1. When C5a was tested in a functional ERK1/2 assay in HMDMs, inhibition of ERK1/2 was observed only at concentrations at or above the EC50 for heteromer formation. This suggested that increased recruitment of the ß-arrestin-C5a2 complex at these C5a concentrations might have an inhibitory role on C5a1 signaling through ERK1/2. An improved understanding of C5a2 modulation of signaling in acute inflammation could be of benefit in the development of ligands for conditions such as sepsis.


Assuntos
Arrestinas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Quimiocinas/metabolismo , Arrestinas/genética , Linhagem Celular , Células Cultivadas , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/biossíntese , Humanos , Macrófagos/imunologia , Ligação Proteica , Multimerização Proteica , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/genética , Receptores de Quimiocinas/química , Receptores de Quimiocinas/genética , beta-Arrestina 2 , beta-Arrestinas
11.
Infect Immun ; 81(9): 3366-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817611

RESUMO

Chlamydia pneumoniae is associated with chronic inflammatory lung diseases like bronchial asthma and chronic obstructive pulmonary disease. The existence of a causal link between allergic airway disease and C. pneumoniae is controversial. A mouse model was used to address the question of whether preceding C. pneumoniae lung infection and recovery modifies the outcome of experimental allergic asthma after subsequent sensitization with house dust mite (HDM) allergen. After intranasal infection, BALB/c mice suffered from pneumonia characterized by an increased clinical score, reduction of body weight, histopathology, and a bacterial load in the lungs. After 4 weeks, when infection had almost resolved clinically, HDM allergen sensitization was performed for another 4 weeks. Subsequently, mice were subjected to a methacholine hyperresponsiveness test and sacrificed for further analyses. As expected, after 8 weeks, C. pneumoniae-specific antibodies were detectable only in infected mice and the titer was significantly higher in the C. pneumoniae/HDM allergen-treated group than in the C. pneumoniae/NaCl group. Intriguingly, airway hyperresponsiveness and eosinophilia in bronchoalveolar lavage fluid were significantly lower in the C. pneumoniae/HDM allergen-treated group than in the mock/HDM allergen-treated group. We did observe a relationship between experimental asthma and chlamydial infection. Our results demonstrate an influence of sensitization to HDM allergen on the development of a humoral antibacterial response. However, our model demonstrates no increase in the severity of experimental asthma to HDM allergen as a physiological allergen after clinically resolved severe chlamydial lung infection. Our results rather suggest that allergic airway disease and concomitant cellular changes in mice are decreased following C. pneumoniae lung infection in this setting.


Assuntos
Alérgenos/imunologia , Chlamydophila pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pyroglyphidae/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Animais , Asma/imunologia , Asma/microbiologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Infecções por Chlamydophila/imunologia , Infecções por Chlamydophila/microbiologia , Infecções por Chlamydophila/patologia , Eosinofilia/imunologia , Eosinofilia/microbiologia , Eosinofilia/patologia , Feminino , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/imunologia , Pneumonia/microbiologia , Pneumonia/patologia , Infecções Respiratórias/microbiologia
12.
Front Immunol ; 14: 1072142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761727

RESUMO

Infections with influenza A viruses (IAV) cause seasonal epidemics and global pandemics. The majority of these infections remain asymptomatic, especially among children below five years of age. Importantly, this is a time, when immunological imprinting takes place. Whether early-life infections with IAV affect the development of antimicrobial immunity is unknown. Using a preclinical mouse model, we demonstrate here that silent neonatal influenza infections have a remote beneficial impact on the later control of systemic juvenile-onset and adult-onset infections with an unrelated pathogen, Staphylococcus aureus, due to improved pathogen clearance and clinical resolution. Strategic vaccination with a live attenuated IAV vaccine elicited a similar protection phenotype. Mechanistically, the IAV priming effect primarily targets antimicrobial functions of the developing innate immune system including increased antimicrobial plasma activity and enhanced phagocyte functions and antigen-presenting properties at mucosal sites. Our results suggest a long-term benefit from an exposure to IAV during the neonatal phase, which might be exploited by strategic vaccination against influenza early in life to enforce the host's resistance to later bacterial infections.


Assuntos
Anti-Infecciosos , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos
13.
Blood Adv ; 5(23): 5190-5201, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649271

RESUMO

Primary or secondary immunodeficiencies are characterized by disruption of cellular and humoral immunity. Respiratory infections are a major cause of morbidity and mortality among immunodeficient or immunocompromised patients, with Staphylococcus aureus being a common offending organism. We propose here an adoptive macrophage transfer approach aiming to enhance impaired pulmonary immunity against S aureus. Our studies, using human-induced pluripotent stem cell-derived macrophages (iMφs), demonstrate efficient antimicrobial potential against methicillin-sensitive and methicillin-resistant clinical isolates of S aureus. Using an S aureus airway infection model in immunodeficient mice, we demonstrate that the adoptive transfer of iMφs is able to reduce the bacterial load more than 10-fold within 20 hours. This effect was associated with reduced granulocyte infiltration and less damage in lung tissue of transplanted animals. Whole transcriptome analysis of iMφs compared with monocyte-derived macrophages indicates a more profound upregulation of inflammatory genes early after infection and faster normalization 24 hours postinfection. Our data demonstrate high therapeutic efficacy of iMφ-based immunotherapy against S aureus infections and offer an alternative treatment strategy for immunodeficient or immunocompromised patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infecções Respiratórias , Infecções Estafilocócicas , Animais , Humanos , Macrófagos , Camundongos , Infecções Estafilocócicas/terapia , Staphylococcus aureus
14.
Sci Rep ; 9(1): 5919, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976090

RESUMO

Neonatal animal models are increasingly employed in order to unravel age-specific disease mechanisms. Appropriate tools objectifying the clinical condition of murine neonates are lacking. In this study, we tested a scoring system specifically designed for newborn mice that relies on clinical observation and examination. Both, in a neonatal sepsis model and an endotoxic shock model, the scoring results strongly correlated with disease-induced death rates. Full as well as observation-restricted scoring, reliably predicted fatality and the remaining time until death. Clinical scores even proved as more sensitive biomarker than 6 traditionally used plasma cytokine levels in detecting sepsis at an early disease stage. In conclusion, we propose a simple scoring system that detects health impairments of newborn mice in a non-invasive longitudinal and highly sensitive manner. Its usage will help to meet animal welfare requirements and might improve the understanding of neonatal disease mechanisms.


Assuntos
Endotoxemia/mortalidade , Modelos Estatísticos , Sepse/mortalidade , Índice de Gravidade de Doença , Animais , Animais Recém-Nascidos , Citocinas/metabolismo , Endotoxemia/etiologia , Endotoxemia/metabolismo , Endotoxemia/patologia , Camundongos , Valor Preditivo dos Testes , Sepse/etiologia , Sepse/metabolismo , Sepse/patologia , Taxa de Sobrevida
15.
Front Immunol ; 8: 1822, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326708

RESUMO

Sepsis is a leading cause of perinatal mortality worldwide. Breast milk (BM) feeding is protective against neonatal sepsis, but the molecular mechanisms remain unexplained. Despite various supplementations with potential bioactive components from BM formula feeding cannot protect from sepsis. S100-alarmins are important immunoregulators in newborns preventing excessive inflammation. At high concentrations, the S100A8/A9 protein complex also has antimicrobial properties due to its metal ion chelation capacity. To assess whether BM contains S100-alarmins that might mediate the sepsis-protective effect of BM 97 human BM samples stratified for gestational age, mode of delivery and sampling after birth were collected and analyzed. S100A8/A9 levels were massively elevated after birth (p < 0.0005). They slowly decreased during the first month of life, then reaching levels comparable to normal values in adult serum. The concentration of S100A8/A9 in BM was significantly higher after term compared with preterm birth (extremely preterm, p < 0.005; moderate preterm, p < 0.05) and after vaginal delivery compared with cesarean section (p < 0.0005). In newborn s100a9-/- mice, enterally supplied S100-alarmins could be retrieved systemically in the plasma. To explore the antimicrobial activity against common causal pathogens of neonatal sepsis, purified S100-alarmins and unmodified as well as S100A8/A9-depleted BM were used in growth inhibition tests. The high amount of S100A8/A9 proved to be an important mediator of the antimicrobial activity of BM, especially inhibiting the growth of manganese (Mn) sensitive bacteria such as Staphylococcus aureus (p < 0.00005) and group B streptococci (p < 0.005). Depletion of S100A8/A9 significantly reduced this effect (p < 0.05, respectively). The growth of Escherichia coli was also inhibited by BM (p < 0.00005) as well as by S100A8/A9 in culture assays (p < 0.05). But its growth in BM remained unaffected by the removal of S100A8/A9 and was neither dependent on Mn suggesting that the antimicrobial effects of S100A8/A9 in BM are primarily mediated by its Mn chelating capacity. In summary, the enteral supply of bioavailable, antimicrobially active amounts of S100-alarmins might be a promising option to protect newborns at high risk from infections and sepsis.

16.
Pathog Dis ; 74(2)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26676260

RESUMO

Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6.


Assuntos
Antibacterianos/uso terapêutico , Vacinas Bacterianas/imunologia , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/fisiologia , Pneumonia por Clamídia/tratamento farmacológico , Pneumonia por Clamídia/prevenção & controle , Interações Hospedeiro-Patógeno , Animais , Antibacterianos/farmacologia , Carga Bacteriana , Biópsia , Linhagem Celular , Pneumonia por Clamídia/microbiologia , Pneumonia por Clamídia/mortalidade , Complemento C3/genética , Complemento C3/imunologia , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina G/imunologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Peroxidase/metabolismo
17.
Infect Immun ; 74(6): 3576-86, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16714590

RESUMO

The bacterial pathogen Burkholderia pseudomallei invades host cells, escapes from endocytic vesicles, multiplies intracellularly, and induces the formation of actin tails and membrane protrusions, leading to direct cell-to-cell spreading. This study was aimed at the identification of B. pseudomallei genes responsible for the different steps of this intracellular life cycle. B. pseudomallei transposon mutants were screened for a reduced ability to form plaques on PtK2 cell monolayers as a result of reduced intercellular spreading. Nine plaque assay mutants with insertions in different open reading frames were selected for further studies. One mutant defective in a hypothetical protein encoded within the Bsa type III secretion system gene cluster was found to be unable to escape from endocytic vesicles after invasion but still multiplied within the vacuoles. Another mutant with a defect in a putative exported protein reached the cytoplasm but exhibited impaired actin tail formation in addition to a severe intracellular growth defect. In four mutants, the transposon had inserted into genes involved in either purine, histidine, or p-aminobenzoate biosynthesis, suggesting that these pathways are essential for intracellular growth. Three mutants with reduced plaque formation were shown to have gene defects in a putative cytidyltransferase, a putative lipoate-protein ligase B, and a hypothetical protein. All nine mutants proved to be significantly attenuated in a murine model of infection, with some mutants being essentially avirulent. In conclusion, we have identified a number of novel major B. pseudomallei virulence genes which are essential for the intracellular life cycle of this pathogen.


Assuntos
Burkholderia pseudomallei/genética , Genes Bacterianos/fisiologia , Ácido 4-Aminobenzoico/metabolismo , Actinas/metabolismo , Animais , Proteínas de Bactérias/fisiologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/patogenicidade , Elementos de DNA Transponíveis , Feminino , Histidina/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Purinas/biossíntese , Vacúolos/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA