Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Small ; 20(29): e2310217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361221

RESUMO

In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.


Assuntos
Ciclodextrinas , Ouro , Nanotubos de Carbono , Rutina , Titânio , Rutina/química , Rutina/análise , Ouro/química , Ciclodextrinas/química , Nanotubos de Carbono/química , Titânio/química , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos
2.
Mikrochim Acta ; 191(8): 484, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060755

RESUMO

Luteolin (Lu), a compound with various biochemical and pharmacological activities beneficial to human health, has attracted researchers' attention. This study proposes an efficient and scalable method using ultrasound to intercalate graphene oxide (GO)-coated silica spheres (SiO2) into MXenes, resulting in a 3D conductive interconnected structural composite material. Characterization of the composite material was conducted using SEM, TEM, XRD, XPS, and Raman spectroscopy. MXenes exhibit excellent electrical conductivity, and the SiO2@GO surface with abundant hydroxyl and silanol groups provides high-binding active sites that facilitate Lu molecule enrichment. The formation of the 3D conductive interconnected structural composites enhances charge transport, significantly improving sensor sensitivity. Consequently, the sensor demonstrates excellent detection capabilities (detection range 0.03-7000 nM, detection limit 12 pM). Furthermore, the sensor can be applied to quantitative determination of Lu in real samples, including chrysanthemums, Jiaduobao, honeysuckle, purple perilla, and peanut shells, achieving recoveries between 98.2 and 104.7%.


Assuntos
Técnicas Eletroquímicas , Grafite , Limite de Detecção , Luteolina , Dióxido de Silício , Grafite/química , Dióxido de Silício/química , Luteolina/análise , Luteolina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise , Nanocompostos/química , Arachis/química , Condutividade Elétrica
3.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874794

RESUMO

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

4.
Anal Chem ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622664

RESUMO

Adenosine triphosphate (ATP), as an indispensable biomolecule, is the main energy source of cells and is used as a marker for diseases such as cancer and fatty liver. It is of great significance to design a near-infrared fluorescent nanoprobe with excellent performance and apply it to various disease models. Here, a near-infrared fluorescent nanoprobe (ZIF-90@SiR) based on a zeolitic imidazole framework is proposed. The fluorescent nanoprobes are synthesized by encapsulating the dye (SiR) into the framework of ZIF-90. Upon the addition of ATP, the structure of the ZIF-90@SiR nanoprobe is disrupted and SiR is released to generate near-infrared fluorescence at 670 nm. In the process of ATP detection, ZIF-90@SiR shows high sensitivity and good selectivity. Moreover, the ZIF-90@SiR nanoprobe has good biocompatibility due to its low toxicity to cells. It is used for fluorescence imaging of ATP in living cells and thus distinguishing normal cells and cancer cells, as well as distinguishing fatty liver cells. Due to excellent near-infrared fluorescence properties, the ZIF-90@SiR nanoprobe can not only distinguish normal mice and tumor mice but also differentiate normal mice and fatty liver mice for the first time.

5.
Proc Natl Acad Sci U S A ; 117(14): 8013-8021, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193335

RESUMO

AMP-activated protein kinase (AMPK) functions as an energy sensor and is pivotal in maintaining cellular metabolic homeostasis. Numerous studies have shown that down-regulation of AMPK kinase activity or protein stability not only lead to abnormality of metabolism but also contribute to tumor development. However, whether transcription regulation of AMPK plays a critical role in cancer metastasis remains unknown. In this study, we demonstrate that AMPKα1 expression is down-regulated in advanced human breast cancer and is associated with poor clinical outcomes. Transcription of AMPKα1 is inhibited on activation of PI3K and HER2 through ΔNp63α. Ablation of AMPKα1 expression or inhibition of AMPK kinase activity leads to disruption of E-cadherin-mediated cell-cell adhesion in vitro and increased tumor metastasis in vivo. Furthermore, restoration of AMPKα1 expression significantly rescues PI3K/HER2-induced disruption of cell-cell adhesion, cell invasion, and cancer metastasis. Together, these results demonstrate that the transcription control is another layer of AMPK regulation and suggest a critical role for AMPK in regulating cell-cell adhesion and cancer metastasis.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Cromonas/farmacologia , Intervalo Livre de Doença , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lapatinib/farmacologia , Camundongos , Morfolinas/farmacologia , Estadiamento de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Prognóstico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Análise Serial de Tecidos , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Vascular ; 31(2): 250-256, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34875933

RESUMO

OBJECTIVE: This study aims to investigate the methods for rat spinal cord ischemia injury models with a high long-term survival rate. METHODS: The rats were divided into three groups: the treatment group, the control group, and the sham operation group. The treatment group had a blocked thoracic aorta (landing zone 3 by Ishimaru - T11) + aortic bypass circulation for 20 min. In the control group, the thoracic aorta at the landing zone 3 was blocked for 20 min. In the sham operation group, only thoracotomy without thoracic aortic occlusion was performed. The mean arterial blood pressure (MABP) of the thoracic aorta and caudal artery before and after thoracic aortic occlusion was monitored intraoperatively. Spinal cord function was monitored by a transcranial motor evoked potential (Tc-MEP) during the operation. Spinal cord function was evaluated by the BBB scale (Basso, Beattie, & Bresnahan locomotor rating scale) scores at multiple postoperative time points. The spinal cord sections of the rats were observed for 7 days after surgery, and the survival curves were analyzed for 28 days after surgery. RESULTS: After aortic occlusion, the MABP of thoracic aorta decreased to 6% of that before occlusion, and the MABP of caudal artery decreased to 63% of that before occlusion in the treatment group. In the control group, the MABP of both thoracic aorta and caudal artery decreased to 19% of that before occlusion. The Tc-MEP waveform of the treatment group disappeared after 6 min, and that of the control group disappeared after 8 min until the end of surgery. There was no change in the Tc-MEP waveform in the sham operation group. The BBB score of the treatment group decreased more obviously than the control group, and there was a significant difference. There was no decrease in the sham group. Spinal cord sections showed a large number of degeneration and necrosis of neurons, infiltration of inflammatory cells, and proliferation of surrounding glial cells in the treatment group. In the control group, multiple neurons were necrotic. The histology of the sham operation group was normal. The 28-day survival rate of the treatment group was 73.3%, which was higher than the control group (40.0%), and there was a significant difference (p < 0.05). CONCLUSION: Thoracic aortic occlusion combined with aortic bypass is an effective modeling method for rats with accurate modeling effects and high long-term survival rates.


Assuntos
Doenças da Aorta , Arteriopatias Oclusivas , Isquemia do Cordão Espinal , Ratos , Animais , Isquemia do Cordão Espinal/etiologia , Isquemia , Medula Espinal/irrigação sanguínea , Medula Espinal/patologia , Medula Espinal/fisiologia , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Aorta Torácica/patologia , Doenças da Aorta/patologia , Necrose/patologia
7.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375159

RESUMO

Rutin, as a biological flavonoid glycoside, has very important medicinal value. The accurate and rapid detection of rutin is of great significance. Herein, an ultrasensitive electrochemical rutin sensor based on ß-cyclodextrin metal-organic framework/reduced graphene oxide (ß-CD-Ni-MOF-74/rGO) was constructed. The obtained ß-CD-Ni-MOF-74 was characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption and desorption. The ß-CD-Ni-MOF-74/rGO presented good electrochemical properties benefiting from the large specific surface area and good adsorption enrichment effect of ß-CD-Ni-MOF-74 and the good conductivity of rGO. Under optimal conditions for the detection of rutin, the ß-CD-Ni-MOF-74/rGO/GCE showed a wider linear range (0.06-1.0 µM) and lower detection limit (LOD, 0.68 nM, (S/N = 3)). Furthermore, the sensor shows good accuracy and stability for the detection of rutin in actual samples.

8.
Anal Chem ; 94(41): 14257-14264, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36210524

RESUMO

Cancer is one of the biggest public enemies of global health with its high morbidity and mortality. Achieving early diagnosis is the most effective means of reducing cancer harm, which requires the use of powerful tools to accurately identify biomarkers. However, most of the reported fluorescent probes for cancer diagnosis can only detect one substance, which makes it difficult to meet the requirements of high accuracy. Here, a fluorescent nanoprobe (CPQ@ZIF-90) for sequential detection of ATP and ONOO- is constructed by encapsulating the ONOO- sensitive unit CPQ within ZIF-90. CPQ@ZIF-90 first reacts with ATP to release CPQ, which greatly enhances the fluorescence at 740 nm. Then, the released CPQ continues to react with ONOO- and is oxidatively cleaved by ONOO- to form a coumarin product with a small π-conjugated structure, which significantly enhances the fluorescence at 510 nm. CPQ@ZIF-90 shows high sensitivity and selectivity for the detection of ATP and then ONOO-. Moreover, CPQ@ZIF-90 has good biocompatibility and successfully realizes the sequential detection of a dual-channel fluorescence change of ATP and ONOO- in living cells and zebrafish and accurately distinguishes normal cells from cancer cells. CPQ@ZIF-90 is expected to be a potential tool for accurate cancer diagnosis through sequential detection of two cancer markers.


Assuntos
Neoplasias , Ácido Peroxinitroso , Trifosfato de Adenosina , Animais , Biomarcadores , Cumarínicos , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Ácido Peroxinitroso/química , Peixe-Zebra
9.
Analyst ; 147(2): 303-311, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34913448

RESUMO

First, the nanocomposite Au@rGO-MWCNT was synthesized by a hydrothermal method. Next, a temperature-controlled composite sensing film was prepared by composite modification of poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA) and Au@rGO-MWCNT on a glassy carbon electrode (GCE). This sensor was shown to exhibit good temperature sensitivity and reversibility to dopamine. When the testing temperature is lower than the lower critical solution temperature (LCST) of the polymer, the PMEO2MA chain is in a stretched state, which increases the distance between the Au@rGO layers and leads to the inability of MWCNTs in one layer to contact another Au@rGO layer and to low conductivity. Therefore, in this state, dopamine cannot detect an electrochemical signal, and it is termed an "off" state. When the temperature is higher than the LCST of the polymer, the PMEO2MA chain shrinks, allowing the MWCNTs to make contact with another layer of Au@rGO; the electron transfer rate of the modified film increases, and the electrochemical behavior of dopamine turns to an "on" state. Moreover, the sensor has a wide detection range (0.1 to 9.0 µM and 9.0 to 239.0 µM), and the limit of detection of dopamine is as low as 30 nM. This method has been successfully applied to the determination of dopamine in human serum samples. The on-off sensor provides a new avenue for the application of temperature-sensitive polymers.


Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Dopamina/análise , Técnicas Eletroquímicas , Eletrodos , Humanos , Temperatura
10.
Analyst ; 147(12): 2739-2748, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35583624

RESUMO

Luteolin (LU), belonging to the group of flavonoids with rich biological activities, has attracted considerable attention. Herein, a novel ultrasensitive LU electrochemical sensor based on hollow cobalt sulfide polyhedron-multi-walled carbon nanotube nanocomposites (CoSx-MWCNTs) and graphene quantum dots (GQDs) was proposed. The hollow CoSx polyhedrons derived from ZIF-67 showed excellent electrochemical sensing performance, which was attributed to the abundant surface active sites endowed by the special hollow structure. When detecting LU using the DPV model, the CoSx-MWCNTs/GQDs/GCE showed a linear range of 5 nM-2000 nM under optimal conditions, and the corresponding detection limit (LOD) was 1.2 nM (S/N = 3). In addition, the sensor exhibited satisfactory sensitivity and accuracy for detecting LU in real samples from Chrysanthemum extracts.


Assuntos
Grafite , Nanotubos de Carbono , Pontos Quânticos , Cobalto , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Limite de Detecção , Luteolina , Nanotubos de Carbono/química , Pontos Quânticos/química
11.
Analyst ; 147(22): 5239-5247, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36281559

RESUMO

Catechin is one of the flavonoids with antioxidant activity and has attracted great interest. A rapid and accurate detection of catechin is of great significance. Herein, an ultrasensitive catechin electrochemical sensor based on uniform ordered mesoporous carbon hollow spheres (MCHSs) advanced carbon-based conductive material modified glass carbon electrode was constructed. The MCHSs were synthesized by pyrolysis using nitrogen protection and template removal methods, and they exhibited excellent electrochemical detection for catechin owing to their high conductivity and uniform and small spheres with a large specific surface area and hollow structure. Under optimal conditions for the detection of catechin, the MCHSs/GCE showed a wider linear range (10 -1400 nM) and lower detection limit (LOD, 2.82 nM, (S/N = 3)). Furthermore, the electrochemical reaction sites and redox mechanisms of catechin were revealed by electrochemical behavior and density flooding theory. Moreover, the sensor we constructed exhibited good accuracy and stability for the detection of catechin in actual sample detections.


Assuntos
Carbono , Catequina , Carbono/química , Eletrodos , Nitrogênio/química , Vidro/química , Técnicas Eletroquímicas/métodos
12.
Sens Actuators B Chem ; 350: 130853, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320347

RESUMO

Baicalin (Bn) obtained from natural plants has been found to exhibit significant antiviral activity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Herein, a novel ultrasensitive Bn electrochemical sensor was proposed based on graphitized carbon-nitride - single-walled carbon nanotube nanocomposites (C3N4-SWCNTs), reduced graphene oxide (rGO) and electrodeposited cyclodextrin-metal organic framework (CD-MOF). The sensing nanomaterials were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Under optimal conditions, the sensor exhibited sensitive detection of Bn in a wide linear range of 1 × 10-9-5 × 10-7 M with an LOD of 4.6 × 10-10 M and a sensitivity of 220 A/M, and it showed satisfactory stability and accuracy for detecting Bn in real samples (human serum and bear bile scutellaria eye drops). In addition, the electrochemical reaction sites and redox mechanism of Bn were revealed through electrochemical behavior and density functional theory. This work provided an insightful solution for detecting Bn, and extensive potential applications could be further expected.

13.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431862

RESUMO

Rutin, a natural flavonol glycoside, is widely present in plants and foods, such as black tea and wheat tea. The antioxidant and anti-inflammatory effects of flavonoids are well known. In this study, a new electrochemical rutin sensor was developed using multiwalled carbon nanotubes/aluminum-based metal-organic frameworks (MWCNT/CAU-1) (CAU-1, a type of Al-MOF) as the electrode modification material. The suspension of multiwalled carbon tubes was dropped on the surface of the GCE electrode to make MWCNT/GCEs, and CAU-1 was then attached to the electrode surface by electrodeposition. MWCNTs and CAU-1 were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Due to the synergistic effect of CAU-1 and MWCNT-COOH, the prepared sensor showed an ultrasensitive electrochemical response to rutin. Under optimized conditions, the sensor showed a linear relationship between 1.0 × 10-9~3.0 × 10-6 M with a detection limit of 6.7 × 10-10 M (S/N = 3). The sensor also showed satisfactory stability and accuracy in the detection of real samples.


Assuntos
Estruturas Metalorgânicas , Nanotubos de Carbono , Nanotubos de Carbono/química , Rutina , Flavonoides , Eletrodos
14.
Anal Chem ; 93(34): 11826-11835, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461732

RESUMO

Cancer ranks as a leading cause of death in every country of the world. However, if they are discovered early, a lot of cancers can be prevented or cured. Discovering and monitoring cancer markers are the main methods for early diagnosis of cancer. To date, many fluorescent probes designed and used for early cancer diagnosis can only react with a single marker, which always causes insufficient accuracy in complex systems. Herein, a novel near-infrared (NIR) fluorescent probe (CyO-DNP) for the sequential detection of H2S and H+ is synthesized. In this probe, a heptamethine dye is selected as the fluorophore and a 2,4-dinitrophenyl (DNP) ether is chosen as recognition group. In the presence of H2S, CyO-DNP is transformed into CyO, which exhibits an intense fluorescence at 663 nm. Then, H+ induces the protonation of CyO to obtain CyOH, and the final fluorescence emission at 793 nm significantly enhances. Owing to the low cytotoxicity and the NIR fluorescence emission, CyO-DNP can sequentially monitor endogenous H2S and H+ in cancer cells and image exogenous and endogenous H2S and H+ in mice. It is worth mentioning that CyO-DNP can effectively avoid the false positive signal caused by the liver and kidney and discriminate normal mice and tumor mice accurately. For all we know, CyO-DNP is the first fluorescent probe for early accurate diagnosis of cancer by sequentially detecting H2S and H+.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Animais , Corantes Fluorescentes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia de Fluorescência , Neoplasias/diagnóstico
15.
Anal Chem ; 93(6): 3301-3307, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33535747

RESUMO

Diabetes is one of the metabolic diseases marked by hyperglycemia and is often accompanied by the occurrence of some complications. As a biomarker of oxidative stress, hydrogen peroxide (H2O2) has close association with the occurrence and development of diabetes and its complications. Unfortunately, there is no fluorescent probe reported for imaging H2O2 in diabetic mice. Here, a novel near-infrared (NIR) fluorescent probe named QX-B was designed and synthesized to detect H2O2. For the probe, the quinolinium-xanthene dye is used as the fluorophore and borate ester is chosen as the response group. After the addition of H2O2, a strong NIR fluorescence signal at 772 nm is observed. The probe not only shows high sensitivity with 10-fold enhancement but also displays excellent selectivity to H2O2 over other possible interfering species. In the meantime, the possible response mechanism of QX-B toward H2O2 was proposed and verified by the high-performance liquid chromatography (HPLC) experiment, mass spectra (MS) experiment, and density functional theory (DFT) calculation. Furthermore, based on the low cell cytotoxicity of QX-B, it has been applied in imaging exogenous and endogenous H2O2 in HeLa cells, HCT116 cells, 4T1 cells, and zebrafish successfully. More importantly, inspired by the performance of NIR fluorescence, QX-B has been used in monitoring H2O2 in diabetic mice for the first time. This provides very important information for the diagnosis and treatment of diabetes and its complications.


Assuntos
Diabetes Mellitus Experimental , Corantes Fluorescentes , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Células HeLa , Humanos , Peróxido de Hidrogênio , Camundongos , Peixe-Zebra
16.
Analyst ; 146(2): 444-449, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179648

RESUMO

Graphdiyne (GDY), a novel two-dimensional (2D) carbon material with sp- and sp2-hybridized carbon atoms, has earned a lot of attention in recent years. Owing to its low reduction potential and highly conjugated electronic structure, it can be used as a reducing agent and stabilizer for the electroless deposition of highly dispersed Au nanoparticles. In this paper, we observe that exfoliated GDY (eGDY), the exfoliation of bulk GDY into single- or few-layered GDY in aqueous solution, can be used as an excellent substrate for the electroless deposition of very small Au nanoparticles to form a Au/eGDY nanocomposite that exhibits higher catalytic performance for the reduction of 4-nitrophenol. The higher catalytic performance is considered to arise from the high specific surface area of eGDY and the electroless deposition of active metal catalysts with eGDY as the support. Our results inspired the present investigation into the use of eGDY for the development of highly efficient catalysts.

17.
Anal Chem ; 92(6): 4244-4250, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066231

RESUMO

Liver fibrosis is a major stage in the development of liver disease, and it is important to investigate its pathogenesis for early intervention or even reversal. Recent studies have found that intestinal disease can aggravate liver fibrosis through the role of the "gut-liver axis". Hypoxia is considered to be a typical characteristic of many diseases including ulcerative colitis and liver fibrosis. However, there is no fluorescent probe for hypoxia detection to investigate the "gut-liver axis". Herein we design and synthesize a turn-on fluorescent probe termed Cy-AP, which displays high sensitivity and selectivity to hypoxia given by sodium dithionite (Na2S2O4) in vitro with near-infrared (NIR) emission (725 nm). The possible response mechanism of Cy-AP toward hypoxia is given and proved though HPLC, MS, and theory calculation. Moreover, on the basis of low cell cytotoxicity, the probe is used in visualizing hypoxia in four cell lines (HepG2, HCT116, HeLa, and MCF-7 cells) by fluorescence imaging, flow cytometry, and 3D imaging. Furthermore, due to its NIR emission, Cy-AP can monitor the hypoxia condition in vivo such as in liver fibrosis mice and ulcerative colitis mice models. In particular, the probe can validate the existence and mechanism of the "gut-liver axis" in vivo by monitoring hypoxia. To the best of our knowledge, this is the first work to give a strategy for studying the "gut-liver axis" by a NIR hypoxia-sensitive fluorescent probe, which will provide some powerful support for delaying the progression of liver fibrosis and thus promoting the treatment of liver disease.


Assuntos
Corantes Fluorescentes/química , Hipóxia/diagnóstico por imagem , Imagem Óptica , Animais , Corantes Fluorescentes/síntese química , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Raios Infravermelhos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem
18.
Mikrochim Acta ; 187(2): 130, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938866

RESUMO

Thiolated ß-cyclodextrin functionalized gold nanoparticles (Au-ß-CDs) with layered wrinkled flower structure were prepared. Au-ß-CDs were electrostatically combined with protonated aminated graphene quantum dots (NH2-GQDs) to form a nanocomposite with better supramolecular recognition, conductivity, catalysis and dispersion properties. For constructing a quercetin (QU) sensor, the nanocomposites were one-step electrodeposited by a cyclic voltammetry (CV) method onto a glassy carbon electrode to form a stable film. Under optimized conditions, the sensor showed a wide linear response range of 1-210 nM, with a lower detection limit of 285 pM. At the same time, flavonoids with similar structures hardly interfere with the determination of QU. The sensor has been used to determine QU in honey, tea, honeysuckle and human serum with satisfactory results. Graphical abstractSchematic representation of the fabrication of an ultrasensitive quercetin electrochemical sensor based on aminated graphene quantum dots, thiolated ß-cyclodextrin and gold nanoparticles (NH2-GQDs/Au-ß-CD/GCE).

19.
Angew Chem Int Ed Engl ; 59(50): 22652-22658, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32869491

RESUMO

The development of new principles and techniques with high neuronal compatibility for quantitatively monitoring the dynamics of neurochemicals is essential for deciphering brain chemistry and function but remains a great challenge. We herein report a neuron-compatible method for in vivo neurochemical sensing by powering a single carbon fiber through spontaneous bipolar electrochemistry as a new sensing platform. By using ascorbic acid as a model target to prove the concept, we found that the single-carbon-fiber-powered microsensor exhibited a good response, high stability and, more importantly, excellent neuronal compatibility. The microsensor was also highly compatible with electrophysiological recording, thus enabling the synchronous recording of both chemical and electrical signals. The sensing principle could be developed for in vivo monitoring of various neurochemicals in the future by rationally designing and tuning the electrochemical reactions at the two poles of the carbon fiber.


Assuntos
Ácido Ascórbico/análise , Fibra de Carbono/química , Neurônios/química , Técnicas Biossensoriais , Química Encefálica , Técnicas Eletroquímicas , Humanos
20.
Anal Chem ; 91(16): 10901-10907, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31362489

RESUMO

Azoreductase (AzoR) is an essential reductive enzyme which is closely associated with the intestinal disease such as ulcerative colitis (UC). To date, only a few fluorescent probes for detecting AzoR activity in bacteria or cells have been constructed successfully. It is still challenging to design fluorescent probes for in situ monitoring AzoR in vivo. In this paper, a near-infrared (NIR) fluorescent probe (Cy-Azo) based on hemicyanine is designed and synthesized. The emission of the probe is located at 735 nm in the NIR region, which is favorable for its application in vivo. In addition, Cy-Azo shows high sensitivity to AzoR activity with 17-fold fluorescence enhancement and is particularly selective to AzoR over other enzymes, ions, and amino acids. Meanwhile, a possible response mechanism (the azo group in Cy-Azo is reduced by AzoR and cleaved resulting in the production of Cy-NH2) was proposed and verified by HPLC, MS, and theory calculation. In addition, based on low cell cytotoxicity, Cy-Azo is successfully applied in visualizing the activity of AzoR in two cell lines (HCT116 and HepG2 cells) and three types of bacteria (E. coli, S. aureus, and P. aeruginosa). In particular, due to its NIR emission, the probe can monitor AzoR activity in acute and chronic UC mice models. To our knowledge this is the first fluorescent probe for detecting AzoR activity in vivo, which can provide much important information for the diagnosis and treatment of UC.


Assuntos
Colite Ulcerativa/diagnóstico por imagem , Corantes Fluorescentes/química , NADH NADPH Oxirredutases/análise , Imagem Óptica , Animais , Escherichia coli/isolamento & purificação , Células HCT116 , Células Hep G2 , Humanos , Raios Infravermelhos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , NADH NADPH Oxirredutases/metabolismo , Nitrorredutases , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA