Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677244

RESUMO

BACKGROUND: Extracellular neutrophil extracellular traps (NETs) play an important role in acute lung injury (ALI), but their mechanisms are still unclear. The aim of this study is to explore the effects of NETs on endothelial glycocalyx/HGF/cMET pathway and ferroptosis in ALI and elucidate their potential mechanisms. METHODS: Plasma was collected from healthy and sepsis patients to test for differences in neutrophil elastase (NE) expression of NETs components. In addition, LPS-ALI mice and endothelial cell injury models were established, and NETs were disrupted by siPAD4 (a driver gene for NETs) and sivelestat (an inhibitor of the NETs component) in the mice and by sivelestat in the endothelial cell injury models, and the effects of NETs on the SDC-1/HS/HGF/cMET pathway were studied. To verify the relationship between NETs and ferroptosis, Fer1, a ferroptosis inhibitor, was added as a positive control to observe the effect of NETs on ferroptosis indicators. RESULTS: The expression level of NE was significantly higher in the plasma of sepsis patients. In ALI mice, intervention in the generation of NETs reduced pulmonary vascular permeability, protected the integrity of SDC-1/HS and promoted the downstream HGF/cMET pathway. In addition, sivelestat also improved the survival rate of mice, decreased the serious degree of ferroptosis. In the endothelial cells, the results were consistent with those of the ALI mice. CONCLUSION: The study indicates that inhibiting the production of NETs can protect the normal conduction of the SDC-1/HS/HGF/cMET signalling pathway and reduce the severity of ferroptosis.


Assuntos
Lesão Pulmonar Aguda , Células Endoteliais , Armadilhas Extracelulares , Ferroptose , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sindecana-1 , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sindecana-1/metabolismo , Sepse/metabolismo , Sepse/patologia , Feminino , Pessoa de Meia-Idade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Modelos Animais de Doenças
2.
Int Immunopharmacol ; 137: 112508, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38889512

RESUMO

BACKGROUND: MicroRNA plays an important role in the progression of sepsis. We found a significant increase of in miR-625-5p expression in the blood of patients with sepsis, and lipopolysaccharide (LPS)-stimulated EA.hy926 cells. To date, little is known about the specific biological function of miR-625-5p in sepsis. METHODS: Changes in miR-625-5p expression were verified through quantitative real-time polymerase chain reaction in 45 patients with sepsis or septic shock and 30 healthy subjects. In vitro, EA.hy926 cells were treated with LPS. Transendothelial electrical resistance assay and FITC-dextran were used in evaluating endothelial barrier function. RESULTS: Herein, patients with sepsis or septic shock had significantly higher miR-625-5p expression levels, chemokine (C-X-C motif) ligand 16 (CXCL16) levels, and glycocalyx components than the healthy controls, and miR-625-5p level was positively correlated with disease. Kaplan-Meier analysis demonstrated a strong association between miR-625-5p level and 28-day mortality. Furthermore, the miR-625-5p inhibitor significantly alleviated LPS-induced endothelial barrier injury in vitro. Then, miR-625-5p positively regulated CXCL16 and down-regulated miR-625-5p attenuated CXCL16 transcription and expression in EA.hy926 cells. CXCL16 knockout significantly alleviated vascular barrier dysfunction in the LPS-induced EA.hy926 cells. sCXCL16 treatment in EA.hy926 cells significantly increased endothelial hyperpermeability by disrupting endothelial glycocalyx, tight junction proteins, and adherens junction proteins through the modulation of C-X-C chemokine receptor type 6 (CXCR6). CONCLUSIONS: Increase in miR-625-5p level may be an effective biomarker for predicting 28-day mortality in patients with sepsis/septic shock. miR-625-5p is a critical pathogenic factor for endothelial barrier dysfunction in LPS-induced EA.hy926 cells because it activates the CXCL16/CXCR6 axis.


Assuntos
Quimiocina CXCL16 , Lipopolissacarídeos , MicroRNAs , Receptores CXCR6 , Sepse , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem Celular , Quimiocina CXCL16/metabolismo , Quimiocina CXCL16/genética , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores CXCR6/metabolismo , Receptores CXCR6/genética , Sepse/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA